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1.PEO’S,PO’S,PSO’S 
  
PROGRAMEDUCATIONALOBJECTIVES: 
PEO1: To excel in different fields of electronics and communication as well as in 
multidisciplinary areas. This can lead to a new era in developing a good electronic product.  
PEO2: To increase the ability and confidence among the students to solve any problem in their 
profession by applying mathematical, scientific and engineering methods in a better and 
efficient way.  
PEO3: To provide a good academic environment to the students which can lead to excellence, 
and stress upon the importance of teamwork and good leadership qualities, written ethical 
codes and guide lines for lifelong learning needed for a successful professional career.  
PEO4: To provide student with a solid foundation to students in all areas like mathematics, 
science and engineering fundamentals required to solve engineering problems, and also to 
pursue higher studies.  
PEO5: To expose the student to the state of art technology so that the student would be in a 
position to take up any assignment after his graduatio n.  
 
PROGRAMOUTCOMES:- 
Engineeringknowledge:Applytheknowledgeofmathematics,science,engineeringfundamentals,and 
anengineering specializationto thesolutionofcomplexengineering problems. 
Problemanalysis:Identify,formulate,reviewresearchliterature,andanalyzecomplexengineeringproblems 
reaching substantiated conclusions using first principles of mathematics, natural sciences,and 
engineeringsciences. 
Design/developmentofsolutions: Designsolutionsforcomplexengineeringproblemsanddesignsystem 
components or processes that meet the specified needs with appropriate consideration 
forthepublichealthand safety,and thecultural,societal,and environmental considerations. 
Conduct investigations of complex problems: Use research-based knowledge and 
researchmethodsincludingdesignofexperiments,analysisandinterpretationofdata,andsynthesisoftheinformati
ontoprovidevalidconclusions. 
Modern tool usage: Create, select, and apply appropriate techniques, resources, and 
modernengineeringandITtoolsincludingpredictionandmodelingtocomplexengineeringactivitieswithanunders
tanding ofthelimitations. 
Theengineerandsociety:Applyreasoninginformedbythecontextualknowledgetoassesssocietal,health, safety, 
legal and cultural issues and the consequent responsibilities relevant to theprofessional engineeringpractice. 
Environment and sustainability: Understand the impact of the professional engineering 
solutionsinsocietalandenvironmentalcontexts,anddemonstratetheknowledgeof,andneedforsustainabledevelo
pment. 
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms 
oftheengineeringpractice. 
Individualandteam work:Functioneffectivelyasanindividual,andasamemberorleaderindiverseteams,andin 
multidisciplinarysettings. 
Communication: Communicate effectively on complex engineering activities with the 
engineeringcommunityandwithsocietyatlarge,suchas,beingableto 
comprehendandwriteeffectivereportsanddesigndocumentation,makeeffectivepresentations,andgiveandrecei
veclearinstructions. 
Project management and finance: Demonstrate knowledge and understanding of the 
engineeringandmanagementprinciplesandapplytheseto 
one’sownwork,asamemberandleaderinateam,tomanageprojectsandin multidisciplinaryenvironments. 
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Life-longlearning:Recognizetheneedfor,andhavethepreparationandabilityto engageinindependentand life-
long learning inthebroadestcontextoftechnological change. 
 
PROGRAMSPECIFIC OUTCOMES: 
 
  PSO1:  The ability to absorb and apply fundamental knowledge of core      Electronics 
and Communication Engineering subjects in the analysis, design, and development of various 
types of integrated electronic systems as well as to interpret and synthesize the experimental 
data leading to valid conclusions.  

PSO2:  Competence in using electronic modern IT tools (both software and hardware) 
for the design and analysis of complex electronic systems in furtherance to research activities.  

PSO3:  Excellent adaptability to changing work environment, good interpersonal skills 
as a leader in a team in appreciation of professional ethics and societal responsibilities.  
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EC302PC: NETWORK ANALYSIS AND 
TRANSMISSION LINES 

 
B.Tech. II Year I Sem. L T P C 

3 0 0 3 
Pre-Requisites: Nil 

 
Course Objectives: 

 To understand the basic concepts on RLC circuits. 
 To know the behavior of the steady states and transients states in RLC circuits. 
 To understand the two port network parameters. 
 To study the propagation, reflection and transmission of plane waves in bounded and unbounded 

media. 

 
Course Outcomes: Upon successful completion of the course, students will be able to: 

 Gain the knowledge on basic RLC circuits behavior. 
 Analyze the Steady state and transient analysis of RLC Circuits. 
 Know the characteristics of two port network parameters. 
 Analyze the transmission line parameters and configurations. 

 

UNIT - I 
Network Topology, Basic cutset and tie set matrices for planar networks, Magnetic 
Circuits, Self and Mutual inductances, dot convention, impedance, reactance concept, 
Impedance transformation and coupled circuits, co-efficient of coupling, equivalent T for 
Magnetically coupled circuits, Ideal Transformer. 

 

UNIT - II 
Transient and Steady state analysis of RC, RL and RLC Circuits, Sinusoidal, Step and Square 
responses. RC Circuits as integrator and differentiators. 2nd order series and parallel RLC 
Circuits, Root locus, damping factor, over damped, under damped, critically damped cases, 
quality factor and bandwidth for series and parallel resonance, resonance curves. 

 

UNIT - III 
Two port network parameters, Z, Y, ABCD, h and g parameters, Characteristic impedance, 
Image transfer constant, image and iterative impedance, network function, driving point 
and transfer functions 
– using transformed (S) variables, Poles and Zeros. Standard T, , L Sections, Characteristic 
impedance, image transfer constants, Design of Attenuators, impedance matching 
network. 

 

UNIT – IV 
Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary & 
Secondary Constants, Equivalent Circuit, Characteristic Impedance, Propagation Constant, 
Phase and Group Velocities, Infinite Line Concepts, Lossless / Low Loss Characterization, 
Types of Distortion, Condition for Distortion less line, Minimum Attenuation, Loading - 
Types of Loading. 
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UNIT – V 
Transmission Lines – II: Input Impedance Relations, SC and OC Lines, Reflection 
Coefficient, VSWR. λ/4, λ/2, λ/8 Lines – Impedance Transformations, Smith Chart – 
Configuration and Applications, Single Stub Matching. 

 

TEXT BOOKS: 
1. Network Analysis – Van Valkenburg, 3rd Ed., Pearson, 2016. 
2. Networks, Lines and Fields - JD Ryder, PHI, 2nd Edition, 1999. 

 
REFERENCE BOOKS: 

1. Electric Circuits – J. Edminister and M. Nahvi – Schaum’s Outlines, Mc Graw Hills Education, 1999. 
2. Engineering Circuit Analysis – William Hayt and Jack E Kemmerly, MGH, 8th Edition, 1993. 
3. Electromagnetics with Applications – JD. Kraus, 5th Ed., TMH 
4. Transmission Lines and Networks – Umesh Sinha, Satya Prakashan, 2001, (Tech. India 

Publications), New Delhi. 
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3.ClassTimeTable&IndividualTimeTable 
 

 

           Class: II/IV B.Tech – I Semester         LECTURE HALL – B1 G04                     Branch: ECE-A   

             
 
                       ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT 

 

Day/ 

Time 

9:15 am 

to 

10:15 am 

10:15 am 

to 

11:15 am 

11:15 am 

to 

12:15 pm 

12:15 pm 

to 

1:15 pm 

1:15pm 

to 

2:00 pm 

2:00 pm 

to 

3:00 pm 

3:00 pm 

to 

4:00 pm 

Monday EDC DSD NATL PTSP 

L 

U 

N 

C 

H 

DSD LAB/EDC LAB 

Tuesday NATL PTSP DSD SS EDC LIBRARY 

Wednesday DSD PTSP EDC NATL SS SEMINAR 

Thursday SS EDC EDC LAB/DSD LAB PTSP TUTORIAL 

Friday NATL SS PTSP DSD COI SPORTS 

Saturday SS NATL DSD EDC BS LAB 

 

 

 

                 Class: II/IV B.Tech – I Semester    

                    LECTURE HALL – B1 G 07                                                                       Branch: ECE-B   

   

                                                                                                                                                       

                                          ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT 

 

Day/ 

Time 

9:15 am 

to 

10:15 am 

10:15 am 

to 

11:15 am 

11:15 am 

to 

12:15 pm 

12:15 pm 

to 

1:15 pm 

1:15pm 

to 

2:00 pm 

2:00 pm 

to 

3:00 pm 

3:00 pm 

to 

4:00 pm 

Monday SS NATL EDC DSD 

L 

U 

N 

C 

H 

PTSP SPORTS 

Tuesday DSD EDC DSD LAB/EDC LAB SS LIBRARY 

Wednesday PTSP SS DSD EDC NATL SEMINAR 

Thursday NATL DSD SS PTSP BS LAB 

Friday DSD PTSP NATL SS EDC TUTORIAL 

Saturday EDC NATL PTSP COI EDC LAB/DSD LAB 
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         Individual TimeTable: 
 

 9.15- 
10.15 

10.15- 
11.15 

11.15- 
12.15 

12.15-1.15 1.15-2.00 2.00- 
3.00 

3.00- 
4.00 

MON  NATL(B) NATL(A) (B) LUNC 
H 

 

TUES   NATL(A)   

WED    NATL(A) NATL(B) 

THUR NATL(B)     

FRI NATL(A)  NATL(B)   

SAT  NATL(B) NATL(A)   
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4.StudentsRollList  ECE-A 
SNo H.T.NO NAME OF THE STUDENT SNo H.T.NO NAME OF THE STUDENT 

1 21S11A0401 ABHIRAM TALLA 27 21S11A0427 RAHITH KUMAR KANDLAGUNTA 

2 21S11A0402 AKASH BASHETTY 28 21S11A0428 RAJESHWAR J 

3 21S11A0403 AKSHAY KUMAR REDDY 
KUNCHANAGARI 

29 21S11A0429 RANI ANANTHA  

4 21S11A0404 ANJANEYULU KAMMARI 30 21S11A0430 REKHA MANGA 

5 21S11A0405 ANKIT RAJ 31 21S11A0431 REVATHI MEESALA  

6 21S11A0406 ASAD PASHA SHAIK 32 21S11A0432 RISHAB SAKALE  

7 21S11A0407 ASHWINI CHETHIPATTI  33 21S11A0433 SAI KRISHNA REDDY B 

8 21S11A0408 BHARATH K 34 21S11A0434 SAI RATNA VEMULA 

9 21S11A0409 BHEESHMA SANDI 35 21S11A0435 SAI RITHIK SIBYALA 

10 21S11A0410 CHAITHANYA ANUMANCHINENI 36 21S11A0436 SAI SRIYA PETTEM 

11 21S11A0411 CHANTI BODA 37 21S11A0437 SAI VENKATA KRISHNA MRUDUL 
RAYANAPATI 

12 21S11A0412 DARSHAN KUMBAM 38 21S11A0438 SHANKHABRATA ROY 

13 21S11A0413 GANESH VANKUDOTH  39 21S11A0439 SHARATH CHANDRA REDDY YALLA 

14 21S11A0414 GEETA RAGHUJI REDDY 40 21S11A0440 SHIVA SAI REDDY SHAGAM 

15 21S11A0415 HARIKA SATTI 41 21S11A0441 SHIVA SHANKAR BADDULA 

16 21S11A0416 HASINI BASHETTY 42 21S11A0442 SREENIPA NANDELLI 

17 21S11A0417 JAGADEESH SANGHISHETTY 43 21S11A0443 SRIRAM REDDY ANANTHA 

18 21S11A0418 JAYA PRAKASH REDDY PANYALA  44 21S11A0444 SWATHI KASHAPAKA 

19 21S11A0419 JEEVANA GATLA  45 21S11A0445 SYED FAHAD 

20 21S11A0420 KALYANI JULKAPELLI 46 21S11A0446 TUSHWANTH KARUTURI 

21 21S11A0421 MANISHA MULA 47 21S11A0447 VAISHNAVI DEVA  

22 21S11A0422 MEHAR NIKHIL MANNE 48 21S11A0448 VENKAT RAO THOKALA 

23 21S11A0423 NANDINI MANNE 49 21S11A0449 VENKATA NAGA VARSHITHA 
POLISETTY 

24 21S11A0424 NITISH REDDY KOTHAKAPU 50 21S11A0450 VIJAY KUMAR KASAM 

25 21S11A0425 PAVAN KUMAR MALLAPPAGARI 51 21S11A0451 VINAY SANGEM 

26 21S11A0426 PRAKASHAM VADAPARTHI 52 21S11A0452 VISHNU VANGARI 

 
 

 
 

 
 
 

 
 

 
 
SNo H.T.NO NAME OF THE STUDENT SNo H.T.NO NAME OF THE STUDENT 

1 21S11A0453 AJAY KUMAR REDDY VITTA 27 21S11A0479 POONAM SAHU  

2 21S11A0454 AKHILA BHUKYA 28 21S11A0480 PRAKASH KATLA 

3 21S11A0455 AKSHAY GOUD DURGAM 29 21S11A0481 PREMKANTH KOMMINENI  
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4 21S11A0456 AKSHAY MIRUPALA 30 21S11A0482 RAJENDER VANKUDOTH 

5 21S11A0457 ANJANEYULU B 31 21S11A0483 RAKESH KRISHNA JAKKA 

6 21S11A0458 ARJUN VISLAVATH  32 21S11A0484 ROHITH REDDY PULAKANTI 

7 21S11A0459 BHANU SAI NAGENDER PAPPALA 33 21S11A0485 SAI KUMAR REDDY MANDAPATI 

8 21S11A0460 BHARGAVI MANDHUGULA  34 21S11A0486 SAI PRASAD K 

9 21S11A0461 CHETHAN THEEGALA 35 21S11A0487 SAI PRASAD REDDY 
AKKENAPALLY 

10 21S11A0462 DEVI PRIYANKA NARIKALAPA 36 21S11A0488 SAICHAND KARRA 

11 21S11A0463 ESHWAR BOLLAPALLI  37 21S11A0489 SAINADH TEEGALA 

12 21S11A0464 ESHWAR VENKATA SATYA SAI 
VITTANALA 

38 21S11A0490 SAITEJA KODHATI 

13 21S11A0465 GANGADHAR REDDY CHALLA 39 21S11A0491 SAKETHBABU VARAGANI 

14 21S11A0466 JAI SINGH ROTHVAN 40 21S11A0492 SIDDARTHA YADAV THOTLA 

15 21S11A0467 JEEVAMRUTHA AKARAPU 41 21S11A0493 SIVA KIRAN AKSHINTALA 

16 21S11A0468 KARTHIK KUMAR C 42 21S11A0494 SPANDANA SEEDULA 

17 21S11A0469 KRISHNA TOLUPUNURI 43 21S11A0495 SRIRAM SINGARAM 

18 21S11A0470 MAHESH NOMULA 44 21S11A0496 SRIVANI GEDDADA 

19 21S11A0471 MANI VEERA NAGENDRA DASARI 45 21S11A0497 SUDHEER KUMAR TOKALA 

20 21S11A0472 MANOJ KUMAR VELISHALA 46 21S11A0498 TEJA SRI GURRALA 

21 21S11A0473 NAGA RAJU RAVULA 47 21S11A0499 THANU SRI REDDY MALLE 

22 21S11A0474 NAGARAJU ARUGONDA 48 21S11A04A0 VAISHNAVI CHEDDE 

23 21S11A0475 NEETHU BOKKA 49 21S11A04A1 VAMSHI KRISHNA 
AMARAGONDA 

24 21S11A0476 NIKHITHA GANGALA 50 21S11A04A2 VIGNESH VALAGIRI 

25 21S11A0477 PAVAN KUMAR UPUTURI  51 21S11A04A3 SYED KALEEMULLAH HUSSAIN 

26 21S11A0478 PAVAN YALKAPALLY  52 21S11A04A4 RICHA MIDDE 
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Topics 

 
 
 

Course 
Learning 
Outcomes 

 
 
 
 
Reference 

    
Review of R, L,C 

Know about 
electrical elements 

T1,T2,R1 
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1. 

 
 
 
 
 
 
 
 
 
 

I. 

   

  
Review of RC, RL, RLC circuits 

Analyse RC, RL, RLC 
circuits 

T1,T2,R1 

  
Network Topology, Terminology 

Understanding 
Network 

T1,T2,R1 

 Basic cut set matrix for 
planar networks 

Define cut set matrix T1,T2,R1 

 Basic tie set matrix for 
planar networks 

Define tie set matrix T1,T2,R1 

  
 

 
2. 

 
Magnetic Circuits 

Understanding 
Magnetic Circuits 

T1,T2,R1 

  
Self and Mutual inductances 

Understanding 
mutual inductance 

T1,T2,R1 

  
Dot convention 

Know about 
Dot convention 

T1,T2,R1 

 Impedance Analyse impedance T1,T2,R1 
 reactance concept Know about reactance T1,T2,R1 
  

 

 
3. 

Impedance transformation 
and coupled circuits 

Understanding 
coupled circuits 

T1,T2,R1 

 Co-efficient of coupling Know about coupling T1,T2,R1 

 Equivalent T for 
Magnetically coupled circuits 

Understanding 
Equivalent T Circuit 

T1,T2,R1 

  
Ideal Transformer 

Know about 
Ideal 
Transformer 

T1,T2,R1 

 4. 
II. 

Steady state and transient analysis 
of RC Circuits 

Know about 
Steady state and 
transient 

T1,T2,R1 
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    response  

 transient analysis of RL and RLC 
Circuits 

Analyse 
transient 
analysis 

T1,T2,R1 

  
transient analysis of RLC Circuits 

Analyse 
transient 
analysis 

T1,T2,R1 

  
Circuits with switches 

Understanding 
switch circuit 

T1,T2,R1 

 5. Step response Analyse step response T1,T2,R1 
 2nd order series and parallel RLC 

Circuits 
Know about 
2nd order 
Circuits 

T1,T2,R1 

  
Root locus 

Understanding 
Root locus 

T1,T2,R1 

 damping factor, over damped, 
under damped 

Analyse 
damped 
response 

T1,T2,R1 

 6. Under damped, critically
 damped cases, 

Analyse 
damped 
response 

T1,T2,R1 

  
Resonance curves 

Know 
about 
resonance 

T1,T2,R1 

 Quality   factor and bandwidth
 for series 

Analyse series 
resonance 
circuit 

T1,T2,R1 

 Quality factor and BW for parallel 
resonance 

Analyse 
parallel 
resonance 
circuit 

T1,T2,R1 

  
 
 

7. 

 
 
 
 
 
 
 
 
 
 
 

III. 

 
Two port network Z parameters 

Know about 
Z parameters 

T1,T2,R3 

  
Two port network using Y 
parameters 

Know about 
Y parameters 

T1,T2,R3 

 Two port network using 
ABCD parameters 

Know about ABCD 
parameter 

T1,T2,R3 

  
Two port network using h 
parameters 

Know about 
h parameter 

T1,T2,R3 

  
 
 

8. 

 
Two port network using g 
parameters 

Know about 
g parameter 

 

  
Characteristic impedance 

Define 
Characteristic 
impedance 

T1,T2,R3 

  
Image transfer constant 

Define Image 
transfer constant 

T1,T2,R3 

  
Image impedance 

Define Image 
impedance 

T1,T2,R3 

  
 

 
iterative impedance 

Define 
iterative 
impedance 

T1,T2,R2 
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9. 

 
network function 

Know about 
network function 

T1,T2,R2 

 Driving point transfer 
functions – using transformed 
(S) variables 

Know about 
Driving point 
transfer 
functions 

T1,T2,R2 
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   Poles and Zeros Define Poles 
and Zeros 

T1,T2,R2 

  
 
 

10 

Standard T, π Sections 
Know about 
Standard T, π 
Sections 

T1,T2,R2 

  
Standard L Section 

Know about 
Standard L Sections 

T1,T2,R2 

  
Characteristic impedance 

Understanding 
impedance 

T1,T2,R2 

  
image transfer constants 

Understanding 
image constants 

T1,T2,R2 

  
 

11 

Design of Attenuators Synthesis Attenuators T1,T2,R2 
  

impedance matching network 
Synthesis 
impedance matching 
n/w 

T1,T2,R2 

  
T and π Conversion, 

Understanding T 
and π Conversion 

T1,T2,R2 

 LC Networks and Filters Synthesis filter T1,T2,R2 
  

 
 
 

12 

 
constant K HP Filters 

Know about 
constant K Filters 

T1,T2,R2 

 Design constant K HP Filters Synthesis HP Filters T1,T2,R2 
 constant K BP Filters Know about 

constant K Filters 
T1,T2,R2 

 Design constant K BP Filters Synthesis BP Filters T1,T2,R2 
  

Composite filter design. 
Synthesis 
composite Filters 

T1,T2,R2 

  
 
 
 
 
 
 

13. 

 
 
 
 
 
 
 
 

 
IV 

Transmission Lines - I : 

Transmission line

 Types, 

Parameters, Transmission Line 

Equations 

 T1,T2,R2 

 Transmission Lines - I : 

Transmission line

 Types, 

Parameters, Transmission Line 

Equations Primary & Secondary 

Constants 

Understanding T1,T2,R2 

 Primary & Secondary Constants Gathering Knowledge T1,T2,R2 

 Primary & Secondary Constants Gathering Knowledge T1,T2,R2 

  
 

14. 

Expressions for Characteristic 
Impedance, Propagation Constant, 
Phase and Group Velocities 

Understanding of 
Characteristic 
Impedance, 
Propagation 
Constant, Phase and 
Group 

T1,T2,R2 
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    Velocities  

 Expressions for Characteristic 
Impedance, Propagation Constant, 
Phase and Group Velocities. 

Compose
 th
e Knowledge 

T1,T2,R2 

 Expressions for Characteristic 
Impedance, Propagation 
Constant, Phase and Group 
Velocities, 

Compose
 th
e Knowledge 

T1,T2,R2 

 Infinite Line Concepts Losslessness 
/Low Loss Characterization 

Compose
 th
e Knowledge 

T1,T2,R2 

  
 
 
 
 
 
 
 

15. 

Infinite Line Concepts Losslessness 
/Low Loss Characterization 

Gathering Knowledge T1,T2,R2 

 Distortion – Condition for 
Distortion lessness Minimum 
Attenuation, Loading - Types of 
Loading. 

Gathering Knowledge T1,T2,R2 

 Distortion – Condition for 
Distortion lessness Minimum 
Attenuation, Loading - Types of 
Loading. 

Compose
 th
e Knowledge 

T1,T2,R2 
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V 

Transmission Lines – II: 
Input Impedance Relations 

 T1,T2,R1 

 
SC and OC Lines, Reflection 
Coefficient, VSWR 

Knowledge of 

Reflection Coefficient, 

VSWR 

T1,T2,R1 

 SC and OC Lines, Reflection 
Coefficient, VSWR 

Gathering Knowledge T1,T2,R1 

 Tutorial / Bridge Class # 9 Understanding T1,T2,R1 

  
 

17 

UHF Lines as Circuit Elements; λ 
/4, λ /2, λ /8 Lines 

Understanding T1,T2,R1 

 UHF Lines as Circuit Elements; λ 
/4, λ /2, λ /8 Lines 

Gathering Knowledge T1,T2,R1 
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   Impedance Transformations Gathering Knowledge T1,T2,R1 

 
Significance of Zmin and Zmax 

Compose
 th
e Knowledge 

T1,T2,R1 

 Tutorial / Bridge Class # 10 Gathering Knowledge T1,T2,R1 

  
 

18 

Smith   Chart – Configuration
 and Applications 

Understanding T1,T2,R1 

 Smith   Chart – Configuration
 and Applications 

Gathering Knowledge T1,T2,R1 

 
Single Stub Matching, 

Gathering Knowledge T1,T2,R1 
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6.UNIT WISE LECTURE NOTES 

a)NotesofUnits 
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ELECTRONICS & COMMUNICATION ENGINEERING 
 
 
 
 
 
 
 
 
 

 
II B.Tech I semester(JNTUH-R18) 



B.Tech (ECE) R-18 

 

 

 

 

 
UNIT – I: 

Transient Analysis (First and Second Order Circuits): 

 Introduction to transient response and steady state response

 Transient response of series –RL, RC RLC Circuits for sinusoidal, square, ramp and 
pulse excitations

 Initial Conditions

 Solution using Differential Equations approach and Laplace 
Transform method



B.Tech (ECE) R-18 

 

 

 

 

Introduction to transient response and steady state response 

 In this chapter we shall study transient response of the RL, RC series and RLC circuits with sinusoidal, 

square, ramp and pulse excitations.

 Transients are present in the circuit, when the circuit is subjected to any changes either by changing source magnitude or 

while changing any circuit elements, provided circuit consists of any energy storage elements.

 There are 3 circuit elements(1)Resistor (2)Inductor(3)Capacitor

 Inductor and Capacitor are called storage elements.

 Inductor doesn’t allow sudden change in current and stores the energy in the form of magnetic field.

 Capacitor doesn’t allow sudden change in voltage and stores the energy in the form of electric field.

 When the circuit is having only resistive elements, no transients present in the circuit since resistor allows sudden 

change in current and voltage and it doesn’t store any energy.

 The total response of the circuit=Transient response +Steady state response.

 Transient response changes with time and gets saturated after some time. It is also called as natural 

response.

 Steady state response doesn’t change with the time. It is also called forced response.

 The time taken for the circuit to change from one steady state to another steady state is called transient 

time.

 Under initial conditions inductor behaves like open circuit i.e. IL=0

 Under steady state conditions inductor behaves like short circuit i.e. VL=0

 Under initial conditions Capacitor behaves like short circuit i.e. VC=0

 Under steady state conditions capacitor behaves like open circuit i.e. IC=0
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- 
t=0 indicates immediately before operating switch 

 

 

 

 

Fig1.1 
 

t=0
+

indicates immediately after operating switch 

t=∞ indicates steady state condition 

- 
t=0 iL=0 

 

t=0
+   

iL=0 

t=∞ iL=V/R 
 

Fig1.2 

- 
t=0 Vc=0 

 

t=0
+   

Vc=0 



The Bc.oTemchp(lEeCmE)entary function of the solution is R-18 

 

 

 

 

 

t=∞ Vc=V 
 

Transient response of  series –RL Circuit for sinusoidal 
excitation 

 

Fig1.3 
 

Consider a circuit consisting of Series resistance and inductance as shown in fig1.3.The switch S is closed 

at t=0. 

At t =0,a sinusoidal voltage V cos(ωt+θ) is applied to the series RL circuit,where V is amplitude of the wave 

and θ is phase angle. 

Application of KVL to the circuit results in the following differential equation. 
 

Vcos(𝜔𝐭 + θ)=Ri+𝐿 
𝑑𝑖 -------------- 

(1.1) 
𝑑𝑡 

 

 

The corresponding characteristic equation is 

 

 
 

  (1.2) 
 

For the above equation, the solution consists of two parts, viz.complementary function and particular  

integral. 

 

 

 

 

 

 



The Bc.oTemchp(lEeCmE)entary function of the solution is R-18 

 

 

 

 

 

 

-----(1.3) 
 

The particular integral can be determined by using undetermined coefficients. 
 

By assuming 
 

  (1.4) 

  (1.5) 

Substituting equations (1.4) and (1.5) in equation (2) 
 

Substituting the values of A and B in equ(1.4),we get 



 

 

 

 
 

To find M and Φ,We divide one equation by the other 
 

 

 
Squaring both equations and adding,we get 

 

The particular current becomes 
 

 

 

  (1.6) 
 

The complete solution for the current i=ic+ip 

 

 

Since the inductor does not allow sudden change in currents, at t=0, i=0 
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 R-18 

 

  

 

 

 
 

 
 

Example1.1 
 

In the circuit as shown in figure below, determine the complete solution for the current, when switch 

S is closed at t=0.Applied voltage v(t)=100cos(103t+π/2).Resistance R=20Ω and inductance L=0.1H. 
 

Solution 
 

By applying Kirchhoff’s voltage law to the circuit, we have 

 
20i+0.1𝑑𝑖 =100 cos(103t+π/2). 

𝑑𝑡 

 
𝑑𝑖+200i=1000cos(1000t+ π/2) 
𝑑𝑡 

 

(D+200)i=1000cos(1000t+ π/2) 
 

The complementary function ic=c𝑒−200𝑡 

By assuming particular integral as 

ip=Acos(𝜔𝐭 + θ) + B sin(𝜔𝐭 + θ) 
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We get 

ip=
 𝑉 

cos(𝜔𝐭 + θ − tan−1 
𝜔𝐋

) 
 

√𝑅2+(𝜔𝐋)2 𝑅 

 

Where 𝜔 = 𝟏𝟎𝟎𝟎 𝐫𝐚𝐝/𝐬𝐞𝐜 

V=100 V,θ = 
π

 
2 

 

L=0.1H,R=20Ω 
 

Substituting the values in the above equation, we get 
 

i =
 100  

 
 

π −1 𝟏𝟎𝟎 
 

  

p  
√202+(𝟏𝟎𝟎𝟎∗𝟎.𝟏)2 

cos(𝟏𝟎𝟎𝟎𝐭 + 
2 

− tan 
20 

)
 

=
 100   

101.9 

 =0.98 

cos(1000𝑡 + 
𝜋
 
2 

 
𝜋 

 
 

− 78.6°) 

cos(1000𝑡 + − 78.6°) 
2 

 

The complete solution is 

i=c𝑒−200𝑡+0.98cos(1000t + 
𝜋 

− 78.6°) 
2 

 

At t=0, the current flowing through the circuit is zero,.i.e.i=0 

c=-0.98cos(
𝜋 

− 78.6°) 
2 

 

The complete solution is 
 

i=[-0.98cos(
𝜋

 
2 

− 78.6°)] 𝑒 
−200𝑡+0.98cos(1000𝑡 + 

𝜋
 
2 

− 78.6°)] 
 

SINUSOIDAL RESPONSE OF R-C CIRCUIT: 
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Consider a circuit consisting of resistance and capacitance in series as shown in fig. The switch, S,is closed at 

t=0.At t=0,a sinusoidal voltage 𝑉 cos(𝜔𝐭 + θ) is applied to the R-C circuit,where V is the amplitude of the wave 

and θ =Phase angle. 

Applying KVL to the circuit results in the following differential equation. 

Vcos(𝜔𝐭 + θ)=Ri+
1 

∫ 𝑖𝑑𝑡 --------------- (1.7) 
𝐶 

 
R𝑑𝑖+ 𝑖 = −V𝜔(𝐬𝐢𝐧 𝜔𝐭 + θ) 

𝑑𝑡  𝐶 
 

(D+ 𝟏 )i=−𝑉𝜔 (𝐬𝐢𝐧 𝜔𝐭 + θ) (1.8) 
𝑹𝑪 𝑹 

 

The complementary function ic=K𝒆
−𝒕⁄𝑹𝑪---------------------- (1.9) 

The particular solution can be obtained by using undetermined coefficients. 
 

ip=A𝐜𝐨𝐬( 𝜔𝐭+ θ)+Bsin 𝜔𝐭 + θ) (1.10) 

ip1=-A𝜔 sin(𝜔𝐭 + θ)+B𝜔 𝐜𝐨𝐬( 𝜔𝐭+ θ) ---------------- (1.11) 

Substituting equations 1.10 and 1.11 in 1.8 we get 

 
{-A𝜔 sin(𝜔𝐭 + θ)+ B𝜔 𝐜𝐨𝐬( 𝜔𝐭+ θ)}+ 1 A𝐜𝐨𝐬( 𝜔𝐭+ θ)+Bsin 𝜔𝐭 + 
θ)= -𝐕𝜔 sin 𝜔𝐭+θ) 

RC R 
 

Comparing both sides 
 

-A𝜔+
 B 

= 
−𝐕𝜔 

RC 𝐑 

 
B𝜔+ 𝐀 =0 

𝐑𝐂 

From which, 

A= 
𝑽𝑹 

 

𝑹𝟐+(
 𝟏 

)
𝟐

 
𝑚𝒄 
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) 

) 

 
 
 

B= - 𝐕  
𝜔𝐂(𝐑𝟐+(

 𝟏    𝟐
 

) ) 
𝜔𝐜 

 

Substituting values of A and B in equation (1.10), we have 

 

 

ip= 𝑽𝑹 𝐜𝐨𝐬( 𝜔𝐭+ θ)+ - 𝐕 sin 𝜔𝐭 + θ) 
𝑹𝟐+(

 𝟏    
𝟐

 
𝑚𝒄 

𝜔𝐂(𝐑𝟐+(
 𝟏 

)
𝟐

) 
𝜔𝐜 

 

Putting 
 

Mcos ∅= 𝑽𝑹  
𝑹𝟐+(

 𝟏    𝟐
 

𝑚𝒄 
 

M𝐬𝐢𝐧 ∅= 𝐕  
𝜔𝐂(𝐑𝟐+(

 𝟏    𝟐
 

) ) 
𝜔𝐜 

 

To find out M and ∅,we divide one equation by other, 
 

M cos ∅ 
= tan ∅= 

1 

𝐌 𝐬𝐢𝐧 ∅ 𝜔𝐂𝐑 
 

Squaring both sides and adding, we get 

𝑽𝟐 

(M cos ∅)2 + (M sin 

∅)2 = 
  𝟏   𝟐 

 

M= 
𝐕

 

√(𝐑𝟐+(
 𝟏 

)
𝟐

) 
𝜔𝐜 

(𝑹𝟐 + (
𝑚𝒄

) ) 

 

The particular current becomes 

 

ip= 
𝐕

 
√(𝐑𝟐

+
(  

𝟏 
)

𝟐
) 

𝐜𝐨𝐬 (𝜔𝐭 + 𝜃 + 𝐭𝐚𝐧−𝟏 
𝟏

 
𝜔𝐂𝐑 
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)------------- 
(1.1 2) 

𝜔𝐜 
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𝑹𝑪    

The complete solution for the current i=ic+ip 
 

i= K𝒆
−𝒕⁄𝑹𝑪 + 

𝐕
 

𝟐 

 

  𝟏   𝟐 

𝐜𝐨𝐬 (𝜔𝐭 + 𝜃 + 𝐭𝐚𝐧−𝟏   𝟏 
𝜔𝐂𝐑 

)------------- (1.13) 

√(𝐑 +(𝜔𝐜) ) 

 

Since the capacitor does not allow sudden change in voltages at t= 
0, 𝑖 = 

V cos 𝜃 
R 

 

V 𝐕 
cos 𝜃 = 𝐾 + 𝐜𝐨𝐬 (𝜃 + 𝐭𝐚𝐧−𝟏 

𝟏 
) 

R 
𝟏   𝟐 𝜔𝐂𝐑 

√(𝐑𝟐 + (
𝜔𝐜

) ) 

 

K 
V 𝐕 

   

−𝟏 𝟏 

 = cos 𝜃 −   𝐜𝐨𝐬 (𝜃 + 𝐭𝐚𝐧 ) 
R 

√(𝐑𝟐+( 
𝟏 

)
𝟐

) 

𝜔𝐂𝐑 

𝜔𝐜 
 

The complete solution for the current is 
 

 

  𝒕   
I

=

 

𝒆
− 

 
V cos 𝜃 − 

𝐕 

R 
√(𝐑𝟐
+( 

 
𝟏 

)
𝟐

) 

𝐜𝐨𝐬 (𝜃 + 𝐭𝐚𝐧−𝟏 
𝟏   

)  + 
𝜔𝐂𝐑 

 
 

𝐕 
 

√(𝐑𝟐
+( 

[ 
 
 

𝟏    
𝟐 
) ) 

𝜔𝐜 
 
 

𝐜𝐨𝐬 (𝜃 + 𝐭𝐚𝐧−𝟏 
𝟏

 
𝜔𝐂𝐑 

] 
 
)------------- (1.14) 

𝜔𝐜 
 

Example 1.2. 

In the circuit as shown in Figure below, determine the complete solution for the current when switch S 

is closed at t=0.Applied voltage is v(t)=50cos(102t+π/4).Resistance R=10Ω and capacitance C=1𝝁𝑭. 
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∫ 

Solution: 

By applying KVL to the circuit, we have 
 

10i+  1 𝑖𝑑𝑡=50cos(𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 
10−6 

 
 
 

10
𝑑𝑖

+   𝑖   = −5 × 103(𝐬𝐢𝐧 𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 
𝑑
𝑡 

10−6 

 

𝑑𝑖 
+ 

𝑖 = 500(𝐬𝐢𝐧 𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 
𝑑
𝑡 

10−5 

 
 
(D+ 𝟏 

10−5 
)i=−500(𝐬𝐢𝐧 𝟏𝟎𝟎𝐭 + 𝛑/𝟒) 

 
−𝒕 ⁄    −5 

The complementary function ic=K𝒆 10 
 

The particular solution ip=A𝐜𝐨𝐬( 𝜔𝐭+ θ)+Bsin 𝜔𝐭 + θ) 
 

We get ip=

 
𝐕

 
√(𝐑𝟐+( 

𝟏 

)
𝟐

) 

𝐜𝐨𝐬 (𝜔𝐭 + 𝜃 + 𝐭𝐚𝐧−𝟏 
𝟏   

) 
𝜔𝐂𝐑 

𝜔𝐜 
 
 

Where 𝜔 = 100 
𝑟𝑎𝑑

 
𝑠𝑒𝑐 

 

𝜃 = 
𝜋

 
4 

 

R=10Ω C=1𝜇𝐹 
 

i = 
𝟓𝟎𝟎 

  

 
 

𝜋 −𝟏 𝟏 
   

p 
√(    𝟐+(

 𝟏 𝟐
 

𝐜𝐨𝐬 (100𝐭 + + 𝐭𝐚𝐧 
4 100×10−6×10

)
 10 100×10−6) ) 

 

ip= 𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (100𝐭 + 
𝜋 

+ 𝟖𝟗. 𝟗𝟒°) 
4 
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at t= 0, 𝑖 = V cos 𝜃 = 
R 

50 
cos 

𝜋 

10
 
4 

= 3.53 𝐴 

 

i= K𝒆 
−𝒕 

10
−5 + 𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (100𝐭 + 𝜋 + 𝟖𝟗. 𝟗𝟒°) 

4 
⁄ 
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At t=0 

K=3.53−𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (
𝜋 

+ 𝟖𝟗. 𝟗𝟒°) 
4 

 

Hence the complete solution is 

i= [𝟑. 𝟓𝟑 − 𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (
𝜋 

+ 𝟖𝟗. 𝟗𝟒°)] 𝒆
−𝒕⁄10−5 + 𝟒. 𝟗𝟗 × 10−3 𝐜𝐨𝐬 (100𝐭 + 

𝜋 
+ 

4 4 

𝟖𝟗. 𝟗𝟒°) 
 

SINUSOIDAL RESPONSE OF RLC CIRCUIT: 

 

Consider a circuit consisting of resistance, inductance and capacitance in series as shown in fig. The switch, S is 

closed at t=0.At t=0,a sinusoidal voltage 𝑉 cos(𝜔𝐭 + θ) is applied to the RLC series circuit ,where V is the 

amplitude of the wave and θ =Phase angle. 

Applying KVL to the circuit results in the following differential equation. 

Vcos(𝜔𝐭 + θ)=RI+L
𝑑𝑖

+
1 

∫ 𝑖𝑑𝑡 --------- (1.15) 
𝑑𝑡  𝐶 

 

Differentiating above equation, we get 
 

R
𝑑𝑖 

+ 𝐿 
𝑑2𝑖 𝑖 

 
𝑑
𝑡 

𝑑𝑡2 + 
𝐶 

= −V𝜔 sin(𝜔𝐭 + θ) 

 

(
D
2 

+ 
𝑅 

D + 
𝐿 

1 
  
𝐿
𝐶 

)i= − V
𝜔 
  
𝐿 

sin(𝜔𝐭 + θ) ------------------ (1.16) 

 

The particular solution can be obtained by using undetermined coefficients. 
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ip=A𝐜𝐨𝐬( 𝜔𝐭+ θ)+Bsin(𝜔𝐭 + θ) ----------- (1.17) 

ip1=-A𝜔 sin(𝜔𝐭 + θ)+B𝜔 𝐜𝐨𝐬( 𝜔𝐭+ θ) --------------------------- (1.18) 
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) 

 

ip”=−A𝜔𝟐 𝐜𝐨𝐬( 𝜔𝐭+ θ)−B𝜔𝟐sin(𝜔𝐭 + θ) (1.19) 

Substituting values of ip, ip1 ,ip” in equ (1.16) we have 

−A𝜔𝟐 𝐜𝐨𝐬( 𝜔𝐭+ θ)−B𝜔𝟐sin(𝜔𝐭 + θ) + R ⌈−A𝜔 sin(𝜔𝐭 + θ) + B𝜔 
𝐜𝐨𝐬( 𝜔𝐭 + θ) ⌉ + 

L 
1 [𝐀 𝐜𝐨𝐬( 𝜔𝐭 + θ) + B sin(𝜔𝐭 + θ) ] = − 

V𝜔 sin(𝜔𝐭 + θ) (1.20) 
𝐿𝐶 𝐿 

 

Comparing 

both sides, we 

have Sine 

coefficients 

−B𝜔𝟐 − A𝜔 
R 

+ 
L 

𝐵 
 

 

𝐿𝐶 
= − 

V𝜔 

𝐿 
 

A
𝜔
 
R

 
L 

+  B 
(𝜔𝟐 

− 
𝟏 

) = 
𝐋𝐂 

V𝜔 
 

 

𝐿 ------------- (1.21) 

 

Cosine coefficients 
 

−A𝟐 R 𝐴  
= 0

 
 

  𝜔  + B𝜔 
L 

+ 
𝐿𝐶 

 

A(𝜔𝟐 −
 𝟏     

− B 
𝐋𝐂 

(
𝜔R

) = 0 -------------- (1.22) 
L 

 

Solving (1.21) and(1.22) we get 
 

 

A= 
𝜔R  2 

[( 
L 

) 

V𝜔2R 

𝐿2 

−((𝜔2 

 
 

 1  2 
−   )  )] 

 
 

𝐋𝐂 
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(𝜔2− 
1

 
2 

) V𝜔 
B
= 

𝐿[(
𝜔R

 
L 

𝐋𝐂 
2 

−((𝜔2 
 1   2 

−   )  )] 
𝐋𝐂 

 

Substituting values of A and B in equation (1.17),We get 
 

V𝜔2R 2 (𝜔2− 
1

 
2 

) V𝜔 ip= 𝐿 𝐜𝐨𝐬( 𝜔𝐭+ θ)+ -------------- 𝐋𝐂 sin(𝜔𝐭 + θ)
 (1.23) 

𝜔R  2 
[( 

L 
) −((𝜔2 

 1   2 
−   )  )] 

𝐋𝐂 
𝐿[( 

𝜔R  2 

L 
) −((𝜔2 

 1   2 
−   )  )] 

𝐋𝐂 

) 
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) 

𝑅 

Putting 
 

 
Mcos ∅ = 

 
 

𝜔R  2 [( 

V𝜔2R 

𝐿2 

2 

 
 

 1  2 

L 
) −((𝜔 − )  )] 

 

(𝜔2− 
1

 
2 

) V𝜔 

M
𝐬
𝐢
𝐧
 
∅
 
= 

𝐿[(
𝜔R

 
L 

𝐋𝐂 
2 

−((𝜔2 
 1   2 

−   )  )] 
𝐋𝐂 

 
 

 

To find out M and ∅,we divide one equation by other, 
 

 

M cos ∅ 
 

 

𝐌 𝐬𝐢𝐧 ∅ 

  1   
(𝜔𝐿− ) 

= tan ∅= 𝜔𝐶   
𝑅 

(𝜔𝐿 − 1 ) 
∅ = tan−1 [ 𝜔𝐶 ] 

𝑅 

Squaring both equations and adding we get 

𝑽𝟐 

(M cos ∅)2 + 
(M sin ∅)2 = 

  𝟏 𝟐 

(𝑹𝟐 + (𝑚𝒄 − 𝜔𝐿) ) 
 

𝑽 
M =    

  𝟏 𝟐 

√(𝑹𝟐 + (𝑚𝒄 − 𝜔𝐿) ) 

 

The particular current becomes 

 
𝐕 

 
 

(𝜔𝐿−
 1  

 

ip=   𝐜𝐨𝐬 (𝜔𝐭 + 𝜃 + tan−1 [ 𝜔𝐶 ]) 

) 

𝐋𝐂 
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 (1.24) 

√(𝐑𝟐+( 
𝟏 

−𝜔𝐿)
𝟐

) 
𝜔𝐜 

 

To find out complementary function ,we have the 
characteristic equation 
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− 

> 

< 

2 

2 

𝑅 

 

(𝑫𝟐 + 𝑹 𝑫 + 𝟏 ) = 𝟎------------- (1.25) 
𝑳 𝑳𝑪 

 

The roots of equation(1.25) are 
 

 

D ,D = − 
𝑅 

± √   𝑅 
 

 

2 
− 

1 
 

 

1 2 2𝐿 ( ) 
2𝐿 𝐿𝐶 

 

By assuming K1=− 𝑅
 

2𝐿 
 

K2= √( 
𝑅 

) 
1

 
2𝐿 

 

D1

= 
K1 
+K

2 

D1= K1 −K2 

𝐿𝐶 

 

K2 becomes positive, when( 𝑅 ) 1
 

2𝐿 𝐿𝐶 
 

The roots are real and unequal, which gives an over 

damped response. Then equation (1.25) becomes 

[𝐷 − ( K1 + K2)][𝐷 − ( K1 − K2)]𝑖 = 0 
 

The complementary function of above equation is 
 

  1   
𝐕 (𝜔𝐿− ) 

ic=c1𝑒(𝑘1+𝑘2)𝑡+c2𝑒(𝑘1−𝑘2)𝑡+ 𝐜𝐨𝐬 (𝜔𝐭 + 𝜃 + 
tan−1 [ 𝜔𝐶 ]) 

√(𝐑𝟐+( 
𝟏 

−𝜔𝐿)
𝟐

) 

 
 

K2 becomes 
negative 
when 

 
( 

𝑅 

𝜔𝐜 
 
 

2 1 
) 
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2𝐿 𝐿𝐶 
 

Then the roots are complex conjugate, which gives an under 
damped response. 

Then equation (1.25) becomes 

[𝐷 − ( K1 + 𝑗K2)][𝐷 − ( K1 − 𝑗K2)]𝑖 = 0 

The solution for above equation is 
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) 

= 

𝑅 

2 

 

ic=𝑒𝑘1𝑡[𝑐1 cos 𝑘2𝑡 + 𝑐2 sin 
𝑘2𝑡] 

i=ic+ip 

 
𝐕 

 
 
 

(𝜔𝐿−
 1  

 

i=𝑒𝑘1𝑡[𝑐1 cos 𝑘2𝑡 + 𝑐2 sin 𝑘2𝑡] +   𝐜𝐨𝐬 (𝜔𝐭 + 
𝜃 + tan−1 [ 𝜔𝐶 ]) 

√(𝐑𝟐+( 
𝟏 

−𝜔𝐿)
𝟐

) 

 
 

k2 
becomes 
zero 
when 

 
( 

𝑅 
) 

1 

2𝐿 𝐿𝐶 

𝜔𝐜 

 

Then the roots are equal which gives 

critically damped response Then 

equation (1.25) becomes (𝐷 − 𝐾1)(𝐷 

− 𝐾1)𝑖 = 0 

The complementary function for the above equation is 

ic=𝑒(𝑘1)𝑡[𝑐1 + 𝑐2𝑡] 

Therefore complete solution is 
i=ic+ip 

 
𝐕 

 
 
 
 

 
( 1 − 𝜔𝐿) 

𝑒(𝑘1)𝑡[𝑐1 + 𝑐2𝑡] +   𝐜𝐨𝐬 (𝜔𝐭 + 𝜃 + tan−1 [  𝜔𝐶 ]) 
  𝟏 𝟐 

𝑅
 

√(𝐑𝟐 + (𝜔𝐜 − 𝜔𝐿) ) 
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Solution using Laplace transformation method: 
 
 

Ramp input 
 

Square input 
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Pulse input 

    Vs(t) 
 

 

 

 

 

Vs(t)=u(t)-u(t-T) 

V (s)=1−𝑒
−𝑆𝑇

 

s 𝑆 
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UNIT – II: 
Two Port Networks: 

 Impedance Parameters, 

 Admittance Parameters, 

 Hybrid Parameters, 

 Transmission (ABCD) Parameters, 

 Conversion of one of parameter to another, 

 Conditions for Reciprocity and Symmetry, 

 Interconnection of two port networks in Series, Parallel and Cascaded configurations, 

Image Parameters, 

 Illustrative problems. 
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Introduction: 
 

A general network having two pairs of terminals, one labeled the “input terminals’’ and the other the “output terminals,’’ is a very 

important building block in electronic systems, communication systems, automatic control systems, transmission and distribution 

systems, or other systems inwhich anelectrical signal orelectric energy enters the input terminals, is acted upon by the network, and leaves 

via the output terminals. A pair of terminals at which a signal may enter or leave a network is also called a port, and a network like the 

above having two such pair of terminals is called a Two - port network. A general two-port network with terminal voltages and 

currents specified is shown in the figure below. In such networks the relation between the two voltages and the two currents can be 

described in six different ways resulting in six different systems of Parameters and in this chapter we will consider the most important 

four systems 

Impedance Parameters: Z parameters (open circuit impedance 
parameters) 

 
We will assume that the two port networks that we will consider are composed of linear elements and contain no independent 

sources but dependent sources are permissible. We will consider the two-port  networks shown in the figure below. 

 

 

 

 

Fig 5.1: Ageneraltwo-

portnetworkwithterminalvoltagesandcurrentsspecified.Thetwo-  port  

network is composed of linear elements, possibly including dependent 

sources, but not containing any independent sources. 
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The voltage and current at the input terminals are V1 & I1, and V2 & I2 are voltage and current at the output port. The directions of I1 and I2 

are both customarily selected as into the network at the upper conductors (and out at the lower conductors). Since the network is 
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Linear and containsnoindependent sources withinit, V1 may beconsidered tobe the superpositionof two components,onecausedbyI1 

AndtheotherbyI2.WhenthesameargumentisappliedtoV2, we get the set of equations 

V1 =Z11I1 +Z12I2 

 
V2 =Z21I1 +Z22I2 

 
[V] = [Z][I] 

 
Where [V],[Z] and [I]areVoltage,impedanceandcurrentmatrices.ThedescriptionoftheZ parameters,definedin theabove 

equations isobtainedbysettingeachofthecurrentsequalto zero as givenbelow. 

Z11=V1/I1│ I2=0 Z12=V1/I2│ I1=0 Z21=V2/I1│ I2=0 Z22 = V2/I2│ I1=0 

 
Thus, since zero current results from an open-circuit termination, the Z parameters are known as the Open-circuit Impedance 

parameters. And more specifically Z11 & Z22 are called Driving point Impedances and Z12 & Z21 are called Reverse and 

Forward transfer impedances respectively. A basic Z parameter equivalent circuit depicting the above defining equations is 

shown in the figure below.  

Fig 5.2: Z-Parameter equivalent circuit 
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Admittance parameters: ( Y Parameters or Short circuit admittance parameters) 

 
The same general two port network shown for Z parameters is applicable here also and is shown below. 

 

 

 

 

 

 
 

Fig 5.3: A general two-port network with terminal voltages and currents 

specified. The two- port network is composed of linear elements, possibly 

including dependent sources, but not containing any independent sources. 

Since the network is linear and contains no independent sources within, on the same lines of Z parameters the 

defining equations for the Y parameters are given below. I1 and I2 may be considered to be the superposition of 

two components, one caused by V1 and the other by V2 and then we get the set of equations defining the Y 

parameters. 

I1 =Y11V1 +Y12V2 

 
I2 =Y21V1 +Y22V2 

 

 
Where the Ys are no more than proportionality constants and their dimensions are A/V (Current/Voltage).  

Hence they are called the Y (or admittance) parameters. They are also defined in the matrix form given below. 
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And in much simpler form as 

 

[I] = [Y][V] 

The individual Y parameters are defined on the same lines as Z parameters but by setting either of the voltages V1 and 

V2 as zero as given below. 

The most informative way to attach a physical meaning to the y parameters is through a direct inspection of defining 

equations. The conditions which must be applied to the basic defining equations are very important. In the first equation 

for example; if we let V2 zero, then Y11 is given by the ratio of I1 to V1. We therefore describe Y11 as the admittance 

measured at the input terminals with the output terminals short-circuited (V2 = 0). Each of the Y parameters may be 

described as a current-voltage ratio with either V1 = 0 (the input terminals short circuited) or V2 = 0 (the output terminals 

short-circuited): 

 
 

Y11 = I1/V1 with V2 = 0 

Y12 = I1/V2 with V1 = 0 

Y21 = I2/V1 with V2 = 0 

y22 = I2/V2 with V1 = 0 

 
Because each parameter is an admittance which is obtained by short circuiting either the output or the input port, 

the Y parameters are known as the short-circuit admittance parameters. The specific name of Y11 is theshort- 

circuit input admittance, Y22 is the short circuit output admittance, and Y12and Y21 are the short-circuit reverse 

and forward transfer admittances respectively. 
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h parameter representation is used widely in modeling of Electronic components and circuits particularlyTransistors.Hereboth 

shortcircuitandopencircuitconditionsareutilized. 

The hybrid parameters are defined by writing the pair of equations relating V1, I1, V2, and I2: 
 

V1 =h11.I1 +h12.V2 

I2 =h21.I1 +h22.V2 

The nature of the parameters is made clear by first setting V2 = 0. Thus, 

 
h11 = V1/I1 with V2 =0 = short-circuit input impedance 

 

 

h21 = I2/I1 with V2 =0 = short-circuit forward current gain 

 

 

Then letting I1 = 0, we obtain h12 = V1/V2 with I1=0 = open-circuit reverse voltage gain 

 

 

h22 = I2/V2 with I1=0 = open-circuit output admittance 

 
Since the parameters represent an impedance, an admittance, a voltage gain, and a current 

gain, they are called the “hybrid’’ parameters. 

The subscript designations for these parameters are often simplified when they are applied to transistors. Thus, h11, 

h12, h21, and h22 become hi, hr, hf, and ho, respectively, where the subscripts denote input, reverse, forward, 

and output. 
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Transmission parameters: 
 

The last two-port parameters that we will consider are called the t parameters, the ABCD parameters, orsimplythe 

transmission parameters. Theyaredefinedbytheequations 

 
V1 =A.V2 – B.I2 

I1 =C.V2 –D.I2 

and in Matrix notation these equations can be written in the form 
 
 

V1 = A B V2 

I1 = C D –I2 

 
where V1, V2, I1, and I2 are defined as as shown in the figure below. 

 

 

Fig 5.6: Two port Network for ABCD parameter representation with Input and 

output Voltages 

andcurrents 

 
The minus signs that appear in the above equations should be associated with the output current, as (−I2). Thus, 

both I1 and −I2 are directed tothe right, the direction of energy or signal transmission. 

Note that there are no minus signs in the t or ABCD matrices. Looking again at the above equations 

 
we see that the quantities on the left, often thought of as the given or independent variables, are the input voltage and 

current, V1 and I1; the dependent variables, V2 and I2, are the output quantities. Thus, the transmission parameters 

provide a direct relationship between input and output. Their major use arises in transmission-line analysis and in 

cascadednetworks. 

The four Transmission parameters are defined and explained below. 



BF.Tirescth A(ECaEn) d C are defined with receiving end open circuited i.e. with I2  = 0 R-18 

 

 

 

 

A = V1/V2 with I2 = 0 = Reverse voltage Ratio C 

= I1/V2 with I2 = 0 = Transfer admittance 

Next B and D are defined with receiving end short circuited i.e. with V2 = 0 

B=V1/−I2 with V2 = 0 = Transfer 

impedance D = I1/−I2 with V2 = 

0 = Reverse current ratio 

Inter relationships between different parameters of two port networks: 

 
Basic Procedure for representing any of the above four two port Network parameters in terms of the other parameters 

consists of the following steps: 

1. Write down the defining equations corresponding to the parameters in terms of which the other 

parameters are to be represented. 

2. Keeping the basic parameters same, rewrite/manipulate these two equations in such a way that the variables V1 ,V2 

,I1 ,and I2 are arranged corresponding to the defining equations of the first parameters. 

3. Then by comparing the parameter coefficients of the respective variables V1 ,V2 ,I1 ,and I2 on the right 

hand side of the two sets of equations we can get the inter relationship. 

Z Parameters in terms of Y parameters: 

Though this relationship can be obtained by the above steps, the following simpler method is used for Z 

in terms of Y and Y in terms of Z: 

ZandYbeingtheImpedanceandadmittanceparameters(Inverse),inmatrixnotationtheyare governed by the 

following inverse relationship. 

 

 
 

Or: 
 

Thus : 
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Z Parameters in terms of ABCD parameters: 
 

The governing equations are: 

V1 = AV2 – BI2 

I1 = CV2 –DI2 

from the second governing equation [ I1= CV2 – DI2 ] we canwrite 
 
 

 

 

 

 

 
 

Now substituting this value of V2 in the first governing equation [V1 = AV2 – BI2] we get 

Comparing these two equations for V1 and V2 with the governing equations of the Z parameter network we get Z 

Parameters in terms of ABCD parameters: 
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Z Parameters in terms of h parameters: 
 

Thegoverningequationsofhparameternetworkare: V1 = h11I1 + h12 V2 

I2 = h21 I1 +h22 V2 

From the second equation we get 
 

 

Substituting this value of V2 in the first equation for V1 we get: 
 

 

 
Now comparing these two equations for V1 and V2 with the governing equations of the Z 

Parameter network we get Z Parameters in terms of h parameters: 
 

 

 

 

 

 

 

Here Δh = h11 h22 – h12 h21 

 

Y Parameters in terms of Z parameters: 
 

Y and Z being the admittance and Impedance parameters (Inverse), in matrix notation they are governed by the 
following inverse relationship. 

 

Or: 
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Thus: 
 

          Here ΔZ = Z11 Z22 – Z12 Z21 

The other inter relationships also can be obtained on the same lines following the basic three steps given in 

thebeginning. 

Conditions for reciprocity and symmetry in two port networks: 

A two portnetworkis said to be reciprocal ifthe ratioof the output responsevariabletothe input excitation variableis 

same whenthe excitation andresponse ports are interchanged. 

A two port network is said to be symmetrical if the port voltages and currents remain the same when the input and 

output ports are interchanged. 

InthistopicwewillgettheconditionsforReciprocity andsymmetry forallthefournetworks. Thebasicprocedure 

foreachofthenetworksconsistsofthefollowingsteps: 

Reciprocity: 
 

 First we will get an expression for the ratio of response to the excitation in terms of the 
particular parameters by giving voltage as excitation at the input port and considering the current in the 

output port as response ( by short circuiting the output port i.e setting V2 as zero 
). i.e find out ( I2 /V1 ) 

 Then we will get an expression for the ratio of response to the excitation in terms of the same 

parameters by giving voltage as excitation at the output port and considering the current in the input 

port as response ( by short circuitingtheinput porti.e.settingV1 aszero).i.efind out ( I1 /V2 ) 
 Equating the RHS of these two expressions would be the condition for reciprocity 

Symmetry: 
 

 FirstweneedtogetexpressionsrelatedtotheinputandoutputportsusingthebasicZorY parameter equations. 

 Thentheexpressionsfor Z11 andZ22 (orY11 and Y22 ) are equatedtogetthe conmditionfor reciprocity. 
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Z parameter representation: Condition for 

reciprocity: 

Let us take a two port network with Z parameter defining equations as given below: 

V1=Z11I1+Z12I2 V2= 

Z21I1+Z22I2 

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the Z 

parameters by giving excitation at the input port and considering the current in the output port as  
response ( by short circuiting the output port i.e. setting V2 as zero ).The corresponding Z parameter circuit for 
this condition is shown in the figure below: 

 
 

 

(Plnotethedirectionof I2 is negativesincewhenV2port isshortedthecurrentflowsinthe other direction) 

Then the Z parameter defining equations are : 

V1 = Z11.I1−Z12.I2 and 0 

= Z21.I1− Z22.I2 

 
 
 

To gettheratioofresponse (I2) totheexcitation (V1) intermsofthe Zparameters I1 istobe 

eliminated fom the above equations. 

Sofromequation2intheabovesetwewillget I1 = I2. Z22/ Z21 

 

And substitute this in the first equation to get 

V1 = (Z11.I2.Z22/Z21)−Z12.I2 = I2[(Z11.Z22/Z21)−Z12] = I2[(Z11.Z22−Z12.Z21)/ Z21) ] I2 = 

V1 . Z21/(Z11 . Z22− Z12.Z21) 

Next, we will get an expression for the ratio of response (I1) to the excitation (V2) in terms of the Z 
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parameters by giving excitation V2 at the output port and considering the current I1 in the input port as 
response (by short circuiting the input port i.e. setting V1 as zero). The corresponding Z parameter circuit 
for this condition is shown in the figure below: 

 
 
 

 
(PlnotethedirectionofcurrentI1isnegativesincewhenV1port isshortedthecurrentflows in the other 

direction ) 

Then the Z parameter defining equations are : 

0 = −Z11 . I1 + Z12.I2 and 
 

V2 = −Z21 . I1 + Z22. I2 

 
 

 
To gettheratioofresponse(I1) totheexcitation (V2) in termsofthe Zparameters I2 istobe 

eliminated fom the above equations. 

Sofromequation1intheabovesetwewillget I2 = I1. Z11/ Z12 

 

And substitute this in the second equation to get 
 

 
V2= (Z22.I1.Z11/Z12)−Z21.I1 = I1[(Z11. Z22/ Z12 )– Z21 ] = I1[(Z11. Z22− Z12.Z21 ) / Z12 ) ] 

 

 
I1 = V2 . Z12/(Z11 . Z22− Z12.Z21 ) 

 
 

 
Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses 
I1 and I2 to be equal would be 
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Z12 = Z21 

 
 
 

 

And this is the condition for the reciprocity. 

 

 

Condition for symmetry: 
 

To get this condition we need to get expressions related to the input and output ports using the basic Z 
parameter equations. 

 

 
V1=Z11I1+Z12I2 V2= 

Z21I1+Z22I2 

 

 
To get the input port impedance I2 is to be made zero. i.e V2 should be open. 

 

 
V1 = Z11 . I1 i.e Z11 = V1/I1 │I2=0 

 
 
 

Similarly to get the output port impedance I1 is to be made zero. i.e V1 should be open. 
 

 
V2 = Z22 . I2 i.e Z22 = V2/I2│ I1=0 

 
 
 

Condition for Symmetry is obtained when the two port voltages are equal i.e. V1 = V2 and the two port currents 

are equal i.e. I1 = I2. Then 

V1/I1 = V2/I2 i.e Z11 = Z22 

And hence Z11 = Z22 is thecondition for symmetry in Z parameters . 
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Y parameter representation: 

Condition for reciprocity : 

 
Let us take a two port network with Y parameter defining equations as given below: 

 

 
I1=Y11V1+Y12V2 I2= 

Y21V1+Y22V2 

 

 
First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the Y 

parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port as 
response ( by short circuiting the output port i.e. setting V2 as zero ) 

Then the second equation in Y parameter defining equations would become 

I2 =Y21V1 +0and I2 /V1 = Y21 

 

 
Then we will get an expression for the ratio of response (I1) to the excitation (V2) in terms of the Y 

parameters by giving excitation (V2) at the output port and considering the current (I1) in the input port 
as response ( by short circuiting the input port i.e setting V1 as zero ) 

Then the first equation in Y parameter defining equations would become 

I1=0 +Y12V2 and I1 / V2 = Y12 

 
 
 

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses 
I1 and I2 to be equal would be 

 

 
I1 / V2 = I2 /V1 

 
 
 

AndhenceY12= Y21 istheconditionforthereciprocityintheTwoportnetworkwithY parameter 
representation. 
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Condition for 
symmetry: 

 

To get this condition we need to get expressions related to the input and output ports ( In this case Input and 
output admittances ) using the basic Y parameter equations 

 

 
I1=Y11V1+Y12V2 I2= 

Y21V1+Y22V2 

 
To get the input port admittance, V2 is to be made zero. i.e V2 should be shorted. 

 

 
I1 = Y11 . V1 i.e Y11 = I1/V1 │V2=0 

 
 

Similarly to get the output port admittance V1 is to be made zero. i.e V1 should be shorted. 
 

 
I2 = Y22 . V2 i.e Y22 = I2/V2 │ V1=0 

 
 
 

Condition for Symmetry is obtained when the two port voltages are equal i.e. V1 = V2 and the two port currents 

are equal i.e. I1 = I2. Then 

I1/V1 = I2/V2 

 

 
And hence Y11 = Y22 is thecondition for symmetryin Y parameters. 

 

ABCD parameter 
representation: 

Condition for reciprocity: 

 
Let us take a two port network with ABCD parameter defining equations as given below: 
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V1 = A.V2 – B.I2 

I1 = C.V2 – D.I2 

 

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the ABCD 

parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port as 
response ( by short circuiting the output port i.e. setting V2 as zero ) 

Then the first equation in the ABCD parameter defining equations would become 
 

 
V1   = 0 – B.I2   = B.I2 

 

i.e I2 / V1 = – 1/B 

 
 

 
Then we will interchange the excitation and response i.e. we will get an expression for the ratio of response (I1) to 
the excitation (V2) by giving excitation (V2) at the output port and considering the current (I1) in the input port as 
response ( by short circuiting the input port i.e. setting V1 as zero ) 

Then the above defining equations would become 

0 =A.V2–B.I2 I1 

=C.V2 –D.I2 

Substituting the value of I2 = A.V2 /B from first equation into the second equation we get 
 

 
I1 = C.V2 – D. A.V2 /B = V2 (C – D. A /B ) 

 

i.e I1/V2 = ( BC – DA ) / B = – (AD –BC)/B 
 
 

 
Assuming the input excitations V1 and V2 to be the same , then the condition for the out responses 
I1 and I2 to be equal would be 

 

I1 / V2 = I2 /V1 

 

i.e –(AD–BC)/B = – 1/B 
 

i.e (AD –BC) = 1 
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Andhence AD– BC= 1 isthecondition for Reciprocity intheTwoportnetwork with ABCD 

parameter representation. 

 
 
 

Condition for symmetry: 
 
 

 
Togetthiscondition weneedtoget expressions relatedtotheinput andoutput ports. Inthis  caseit iseasy to 
use the Z parameter definitions of Z11 and Z22 for the input and output ports respectively and get their 
values in terms of the ABCD parameters as shown below. 

V1 =A.V2 –B.I2 I1 

=C.V2 –D.I2 

 

 
Z11 = V1/I1 │ I2=0 

 

Applying this in both the equations we get 

Z11=V1/I1│ I2=0 = (A.V2 – B.I2)/(C.V2 – D.I2) │ I2=0 
 

= (A.V2 – B.0)/(C.V2 – D.0) 
 

= (A.V2)/(C.V2) = A/C 
 

Z11 = A/C 
 
 
 
 

Similarly Z22 = V2/I2 │ I1=0 
 

and using this in the second basic equation I1 = C.V2 – D.I2 

 

 
 

 
Z22 = D/C 

weget 0 = C.V2 –D.I2 or C.V2 = D.I2 V2 / 

I2 = D/C 
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Andthe conditionforsymmetrybecomes Z11 = Z22 i.e A/C = D/C Or A = D 

Hence A = D is the condition for Symmetry in ABCD parameter 
representation. 

 
 
 

 
h parameter representation: 

Condition for reciprocity : 
 

Let us take a two port network with h parameter defining equations as given below: 
 

 
V1 =h11.I1+h12.V2 I2 

=h21.I1+h22.V2 

 

 
First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the h 

parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port as 
response ( by short circuiting the output port i.e. setting V2 as zero ) 

 

 
Then the first equation in the h parameter defining equations would become 

 

 
V1 = h11.I1 +h12.0 = h11. I1 

 

 
And in the same condition the second equation in the h parameter defining equations would become 

I2 = h21.I1 +h22.0 = h21. I1 

 

 
Dividing the second equation by the first equation we get 

 

 
I2/V1 = ( h21. I1)/(h11. I1) = h21 /h11 

 

Now the excitation and the response ports are interchanged and then we will get an expression for the 
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ratio of response (I1) to the excitation (V2) in terms of the h parameters by giving excitation (V2) at the 
output port and considering the current (I1) in the input port as response ( by short circuiting the input 
port i.e. setting V1 as zero ) 



B.Tech (ECE) R-18 

 

 

 

 

 

Then the first equation in h parameter defining equations would become 
 

 
0=h11.I1 +h12.V2 i.e h11.I1 = – h12.V2 

 

i.e. I1 /V2 = – h12 / h11 

 
 
 

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses 
I1 and I2 to be equal would be 

 

I1 / V2 = I2 /V1 

 

i.e = – h12 / h11 = h21 /h11 

 

 
i.e. h12 = – h21 

 
 

And hence [h12 = – h21 ] is the condition for the reciprocity in the 
Two port network with h parameter representation. 

 
 
 

Condition for symmetry: 

 
 

 
To get this condition we need to get expressions related to the input and output ports. In this case also it is 
easy to use the Z parameter definitions of Z11 and Z22 for the input and output ports respectively and get 
their values in terms of the h parameters as shown below. 

h parameterequationsare : V1 = h11. I1 + h12.V2 

 
I2   = h21. I1 + h22.V2 

 

First let us get Z11 : 

Z11 = V1/I1 │ I2=0 
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= h11 + h12.V2 / I1 

 

Applying the condition I2=0 in the equation 2 we get 

0 =h21.I1 +h22.V2 i.e –h21. I1 = h22.V2 

 
 

 
or V2 = I1 (–h21 / h22) 

 

Now substituting the value of V2 = I1 (–h21 / h22) in the above first expression for V1 we get 
 

V1 = h11. I1 + h12. I1.( –h21 / h22 ) 
 

OrV1/ I1 = (h11. h22 – h12. h21 )/ h22 = Δh / h22 

Or Z11 = Δh / h22 

Where Δh = (h11.h22 –h12.h21) Now let us 

get Z22 : 

Z22 = V2/I2│ I1 = 0 
 
 

Applying the condition I1 = 0 in the second equation we get 
 

I2 = h21. 0 + h22.V2 i.e V2/I2 = 1/ h22 

 

And Z22 = 1/ h22 

 

Hence the condition for symmetry Z11 = Z22 becomes (Δh / h22) = (1/ h22 ) i.e Δh = 1 

 
 
 

Hence Δh = 1 is the condition for symmetry in h parameter representation. 
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all four parameters. 
 
 
 
 

 
 

 
Different types of interconnections of two port networks: 

Series Connection: 
 

Though here only two networks are considered, the result can be generalized for any number of two port 
networks connected in series. 

Refer the figure below where two numbers of two port networks A and B are shown connected in series. All the 
input and output currents & voltages with directions and polarities are shown. 

 

 
Fig : Series connection of two numbers of Two Port Networks 

 

 
Open circuit Impedance parameters ( Z ) areusedincharacterizingtheSeriesconnectedTwo port 

Networks .Thegoverningequations withZ parameters aregivenbelow: 
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For network A : 

 

 
 

And for network B: 
 

Referring to the figure above the various voltage and current relations are: 
 

Now substituting the above basic defining equations for the two networks into the above expressions for 
V1 and V2 and using the above current equalities we get: 

 

 

And similarly 
 

Thus we get for two numbers of series connected two port networks: 
 

Or in matrix form: 
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ThusitcanbeseenthattheZparametersfortheseriesconnectedtwoportnetworksarethe sumofthe Z 
parameters ofthe individual twoport networks. 

 

 

Cascade connection: 
 

In this case also though here only two networks are considered, the result can be generalized for any number 
of two port networks connected in cascade. 

Refer the figure below where two numbers of two port networks X and Y are shown connected in cascade. All 
the input and output currents & voltages with directions and polarities are shown. 

 
 

 
Fig 5.8: Two numbers of two port networks connected in cascade 

 

Transmission ( ABCD ) parameters are easily usedin characterizing the cascade connected Two port 
Networks .The governing equations with transmission parameters are given below: 

 

 
For network X: 

 

And for network Y: 
 

Referring to the figure above the various voltage and current relations are: 
 

Then the overall transmission parameters for the cascaded network in matrix form will become 
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Where 
 
 
 

 
 

Thus it can be seen that the overall ABCD Parameter matrix of cascaded two Port Networks is theproduct ofthe 
ABCDmatrices ofthe individual networks. 

Parallel Connection: 
 

Though here only two networks are considered, the result can be generalized for any number of two port 
networks connected in parallel. 

Refer the figure below where two numbers of two port networks A and B are shown connected in parallel. All 
the input and output currents & voltages with directions and polarities are shown. 

 

 
 
 

Fig 5.9: Parallel connection of two numbers of Two Port Networks 
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Short circuit admittance (Y) parameters are easily used in characterizing the parallel connected Twoport 

Networks.Thegoverningequations withYparametersaregivenbelow: 

 
 
 

For network A: 



 

 

 

 

 

And for network B: 

R-18 

 

 
 

 

Referring to the figure above the various voltage and current relations are: 

 

Thus 
 
 
 

 

 
Thus we finally obtain the Y parameter equations for the combined network as: 

 
 
 

 

 
And in matrix notation it will be: 

B.Tech (ECE) 



B.Tech (ECE) R-18 

 

 

 

 

 
 
 

 

Thus it can be seen thatthe overall Yparameters for theparallel connected two port networksarethe 
sumoftheYparametersoftheindividualtwoportnetworks. 

 
 
 
 

Image impedances in terms of ABCD parameters: 
 
 

 
Image impedances Zi1 and Zi2 of a two port network as shown in the figure below are defined as two values of 

impedances such that : 

a) Whenporttwoisterminatedwith animpedanceZi2 ,theinputimpedanceasseenfromPort one is Zi1 and 

b) Whenportoneisterminatedwith animpedanceZi1 ,theinputimpedanceasseenfromPort two is Zi2 
 
 
 
 
 

 
 
 

Figure 5.10: pertining to condition (a) above 

 

 
Corresponding Relations are : Zi1 = V1/I1 and Zi2 = V2 / – I2 
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Figure 5.10: pertining to condition (b) above 

 

 
Corresponding Relations are : Zi1 = V1/– I1 and Zi2 = V2/ I2 

 
 
 

Such Image impedances in terms of ABCD parameters for a two portnetwork are obtained 

below: 

The basic defining equations for a two port network with ABCD parameters are : 
 

 
V1 =A.V2 –B.I2 I1 

=C.V2 –D.I2 

 

 

First let us consider condition (a). 
 

Dividing the first equation with the second equation we get 
 
 
 

Butwealsohave Zi2 = V2 / – I2 andsoV2 = – Zi2 I2. SubstitutingthisvalueofV2intheabove we get 
 
 



NowBl.eTetcuhs(EcCoE)nsider the condition (b): R-18 

 

 

 

The basic governing equations [V1 = A.V2 – B.I2 ] and [I1 = C.V2 – D.I2 ] are manipulated to get 
 
 
 
 

Butwealsohave Zi1 = V1/–I1  andsoV1 = – Zi1 I1.SubstitutingthisvalueofV1 intheabove we get: 
 
 

Solving the above equations for Zi1 and Zi2 we get : 
 
 
 

 
 
 

Important formulae, Equations and Relations: 

 

 
 Basic Governing equations in terms of the various Parameters: 
 Z Paramaters : V1 = Z11I1 + Z12I2

 

V2 = Z21I1 + Z22I2 

 Y Parameters: I1 = Y11V1  + Y12V2

I2 = Y21V1 + Y22V2 

 h Parameters: V1 = h11. I1 +h12.V2

I2  = h21.I1 + h22.V2 

 

ABCD Parameters: V1 = A.V2 – B.I2 
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I1  = C.V2 – D.I2 

 

 Conditions for Reciprocity and symmetry for Two Port Networks 
in terms of the various parameters : 

 
 

 

 
 Relations of Interconnected two port Networks : 

 The overall Z parameters for the series connected two port networks are the sum of the Z 

parameters of the individual two port networks. 

 The overall Y parameters for the parallel connected two port networks are the sum of the Y 

parameters of the individual two port networks. 

 The overall ABCD Parameter matrix of cascaded two Port Networks is the product of the ABCD 

matrices of the individual networks. 

 
Illustrative problems : 

 

 
Example 1: Find the Z Parameters of the following Two Port Network and draw it’s equivalent 
circuit in terms of Z1 Z2 and Z3 . 
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Solution: Applying KVL to the above circuit in the two loops ,with the current notation as shown, the 
loop equations for V1 and V2 can be written as : 

 
 
 

 

 
Comparing the equations (i) and (ii) above with the standard expressions for the Z parameter equations we 
get: 

 

Equivalent circuit in terms of Z1 Z2 and Z3 is shown below. 
 
 
 

Example 2: Determine the Z parameters of the π type two port network shown in the figure below. 
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Solution: 

From the basic Z parameter equations We know that 

Z11 = V1/I1 │ I2=0 Z12 

= V1/I2 │ I1=0 Z21 = 

V2/I1 │ I2=0 Z22 = 

V2/I2│ I1=0 

We will first find out Z11 and Z21 which are given by the common condition I2 = 0 

1. Wecanobservethat Z11 =V1/I1 with I2=0 isthe parallel combinationof R1 and (R2 + R3) . 

∴ Z11 = R1 (R2 + R3) /(R1+R2 + R3) 
 

2. Z21 = V2/I1 │ I2=0 
 

By observing the network we find that the current I1 is dividing into I3 and I4 as shown in the figure where I3 

is flowing through R2(and R3 also since I2=0) 

 

 
Hence V2 = I3 xR2 

Fromtheprincipleofcurrentdivisionwefindthat I3 =I1 .R1 /(R1+R2 +R3) Hence 

V2= I3 xR2 =[I1.R1 /(R1+R2 +R3)].R2 = I1.R1 R2/(R1+R2+R3) And 

V2/I1 = R1 R2 / (R1+R2 + R3) 

∴ Z21 = R1 R2 /(R1+R2 + R3) 
 

Next we will find out Z12 and Z22 which are given by the common condition I1 = 0 3. Z12 = 

V1/I2 │ I1=0 
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Byobserving the network we find that the current I2 is now dividing into I3 and I4 as shown in the figure 
where I4 is flowing through R1 ( and R3 also since I1 = 0 ) 

Hence V1 = I4 xR1 

Again from the principle of current division we find that I4 = I2 . R2 / (R1+R2 + R3) Hence V1 

= I4 xR1 =[I2 .R2 /(R1+R2 +R3)].R1 = I2 .R1 R2 /(R1+R2 +R3) And 

V1/I2 = R1 R2 / (R1+R2 + R3) 

∴ Z12 = R1 R2 /(R1+R2 + R3) 
 

4. We can again observe that Z22 = V2/I2 with I1=0 is the parallel combination of R2 and (R1 + R3) 
. 

 

∴ Z22 = R2 (R1 + R3) /(R1+R2 + R3) 

 
Example 3 : Determine the Z parameters of the network shown in the figure below. 

 
 
 

 
 

1). Wewill first find out Z11 and Z21 whicharegiven by thecommon condition I2 = 0 (Output open 
circuited) 

 

 
With this condition the circuit is redrawn as shown below. 
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Since the current source is there in the second loop which is equal to I1 and I2 is zero, only current I1 flows 
through the right hand side resistance of 10Ω and both currents I1( both loop currents ) pass through 
the resistance of 5 Ω as shown in the redrawn figure . 

Now the equation for loop one is given by : 

V1 = 10x I1 + 5 ( 2 I1 ) = 20 I1 and V1/I1 = 20Ω 
 

 
∴ V1/I1 │I2=0 = Z11 = 20Ω 

Next the equation for loop two is given by : 

V2 = 10x I1 + 5 ( 2 I1 ) = 20 I1 and V2/I1 = 20Ω 
 

 
∴ V2/I1 │I2=0 = Z21 = 20Ω 

2). Next we will find out Z12 and Z22 which aregiven by thecommon condition I1 = 0 (input open 
circuited) 

 

 
With this condition the circuit is redrawn as shown below. 

 
 
 

 

 
Now since the current I1 is zero ,the current source of I1 would no longer be there in the output loop and it is 
removed as shown in the redrawn figure. Further since input current I1= 0 ,there would be no current in the input 
side 10Ω and the same current I2 only flows through common resistance of 5 Ω and output side resistance of 
10 Ω .With these conditions incorporated, now we shall rewrite the two loop equations ( for 
inputV1andoutputV2 )togetZ12 and Z22 

Equation for loop one is given by : 
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V1 = 5 I2 and V1/I2 = 5Ω 

 

∴ V1/I2 │I1=0 = Z12 = 5Ω 
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And the equation for loop two is given by: 
 

 
V2 = 10 x I2 + 5 x I2 = 15 I2 and V2/I2 = 15Ω 

∴ V2/I2 │I1=0 = Z22 = 15Ω 
 

 
Finally: Z11 = 20Ω ; Z12 = 5Ω ; Z21 = 20Ω ; Z22 = 15Ω 

 

 
Example 4: Obtainthe open circuit parameters ofthe Bridged T network shown inthefigure below. 

 

 

 
Open circuit parameters are same as Z parameters. 

 

 
1). Wewill first find out Z11 and Z21 which aregiven by thecommon condition I2 = 0 (Output open 
circuited) 

 

 
With this condition the circuit is redrawn as shown below. 
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From the inspection of the figure in this condition it can be seen that ( since I2 is zero ) the two resistances 
i.e the bridged arm of 3Ω and output side resistance of 2Ω are in series and together are in parallel with 
the input side resistance of 1Ω. 

Hence the loop equation for V1 can be written as: 

V1 = I1 x [(3+2) ǁ 1 + 5] = I1 x 35/6 and V1/I1 = 35/6 

∴ V1/I1 │I2=0 = Z11 = 35/6Ω 
 

Next the loop equation for V2 can be written as : 
 

 
V2 = I3 x2 + I1x5 

But we know from the principle of current division that the current I3 = I1 x [1/(1+2+3)] = I1 x 1/6 Hence V2 = I1 x 1/6 

x 2 + I1x 5 = I1 x 16/3 and V2 / I1 = 16/3 Ω 

∴ V2/I1 │I2=0 = Z21 = 16/3 Ω 
 

 
2). Next we will find out Z12 and Z22 which aregiven by thecommon condition I1 = 0 (input open 
circuited) 

With this condition the circuit is redrawn as shown below. 
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Fromtheinspectionofthefigureinthiscondition itcanbeseenthat(sinceI1iszero) thetwo resistances i.e the 

bridged arm of 3Ω and input side resistance of 1Ω are in series and together are in parallel with the output side 

resistance of 2Ω. Further I2 = I5 + I6 

Hence the loop equation for V1 can be written as : V1 = I5 

x1 + I2x5 

But we know from the principle of current division that the current I5 = I2 x [2/(1+2+3)] = I2 x 1/3 Hence V1 = I2 x 1/3 

x 1 + I2x 5 = I2x 16/3 and V1 / I2 = 16/3 Ω 

∴ V1/I2 │I1=0 = Z12 = 16/3 Ω 
 

Next the loop equation for V2 can be written as: 
 

 
V2 = I6 x2 + I2x5 

 

 
Butweknowfromtheprincipleof current divisionthatthecurrent I6 =I2 x[1/(1+2+3)] =I2 x (3+1)/6 = (I2 x 
2/3) 

 

 
Hence V2 = I2 x (2/3)x 2 + I2x5 = I2 x 19/3 and V2/I2 = 19/3 

∴ V2/I2 │I2=0 = Z22 = 19/3 Ω 

 
Example 5 : Obtain Z parameters of the following π network with a controlled current source of 
0.5 I3 in the input port. 
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1). Wewill first find out Z11 and Z21 whicharegiven by thecommon condition I2 = 0 (Output open 
circuited) 

With this condition the circuit is redrawn as shown below. 
 
 
 

 
 

In this condition we shall first apply Kirchhoff’s current law to the node ‘c’: 

Then I1 = 0.5I3 + I3 (I3 being the current through the resistances of 8 Ω and 5 Ω ) i.e I1 = 

0.5I3 + I3 or I1 = 1.5I3 or I3 = I1/1.5 i.e I3 = (2/3)I1 

Now we also observe that V1 = I3(8+5) = 13. I3 

Using the value of I3 = (2/3)I1 into the above expression we get V1 = 

13(2/3)I1 and V1/ I1 = 26/3 = 8.67 

∴ V1/I1 │I2=0 = Z11 = 8.67Ω 

Next we also observe that V2 = 5 . I3 and substituting the above value of I3 = (2/3)I1 into this expression for 
V2 we get : 

V2 = 5 . I3 i.e V2 = 5 . (2/3)I1 i.e V2 / I1 = 10/3 = 3.33Ω 
 

 
∴ V2/I1 │I2=0 = Z21 = 3.33 Ω 

 

 
2). Next we will find out Z12 and Z22 which aregiven by thecommon condition I1 = 0 (input open 
circuited) 

With this condition the circuit is redrawn as shown below. 
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In this condition now we shall first apply Kirchhoff’s current law to the node ‘e’: 

Then I2 = 0.5I3 + I3 ( 0.5.I3 being the current through the resistance of 8 Ω and I3 being the current 
through the resistances of 5 Ω ) 

i.e I2 = 0.5I3 + I3 or I2 = 1.5I3 or I3 = I2/1.5 i.e I3 = (2/3)I2 

Now we also observe that V1 = (-0.5I3 x 8 + I3x5) = I3 (it is to be noted here carefullythat – sign is to betaken 
before0.5I3x8sincethe currentflowsthroughtheresistance of8 Ωnowinthe reverse direction. 

Using the value of I3 = (2/3)I2 into the above expression for V1 we get V1 = 

(2/3)I2 and V1/I2 = 0.67 

∴ V1/I2 │I1=0 = Z12 = 0.67Ω 

Next we also observe that V2 = 5 . I3 and substituting the above value of I3 = (2/3)I2 into this expression for V2 

we get : 

V2 = 5 . I3 i.e V2 = 5 . (2/3)I2 i.e V2 / I2 = 10/3 = 3.33Ω 
 

 
∴ V2/I2 │I1=0 = Z21 = 3.33 Ω 

Example 6 : Find the Y parameters of the following π type two port network and draw it’s Y 
parameter equivalent circuit in terms of the given circuit parameters. 
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Applying KCL at node (a) we get 
 
 

 

Similarly applying KCL to node (c ) we get 
 
 
 

 

 
Comparing the equations (i) and (ii) above with the standard expressions for the Y parameter equations we 
get: 

 
 
 

Observing the equations (i) and (ii) above we find that : 

 ThetermsV1(YA+YB)and V2(Yc+YB)arethecurrents throughthe admittances Y11 andY22 and 
 Theterms -YB .V2 and -YB .V1 arethedependentcurrentsourcesintheinputandtheoutput ports respectively. 
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These observations are reflected in the equivalent circuit shown below. 
 
 
 

 

 
In the above figure Y11 = (YA+ YB) & Y22 = (Yc+YB) are the admittances and 

 

 
Y12 .V2 = -YB .V2 & Y21 .V1 = -YB .V1 are the dependent current sources 

 
Example 7: Find the Y parameters of the following network 

 
 
 

 

 
Solution: We will solve this problem in two steps. 

1. We shall first express the Z parameters of the given T network in terms of the impedances Z1, Z2 and Z3 

using the standardformulaswealreadyknowandsubstitutethegivenvaluesof Z1, Z2 and Z3 . 
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2. Then convert the values of the Z parameters into Y parameters i.e express the Y parameters in 
terms of Z parameters using again the standard relationships. 

 

Example 8: Find the ‘ h’ parameters of the network shown below. (fig12.34) 
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First let us write down the basic ‘ h’ parameter equations and give the definitions of the ‘ h’ 

parameters. 
 

V1 =h11.I1+h12.V2 I2 

=h21.I1+h22.V2 

h11 = V1/I1 with V2 =0  h21 = I2/I1  with V2 =0 

h12 = V1/V2    with I1=0 h22 = I2/V2 with I1=0 

 

Now 
 

 
1). Wewillfirstfindouth11 andh21 whicharegiven bythecommonconditionV2 =0(Output short 
circuited) 

In this condition it can be observed that the resistance RC and the current source αI1 become parallel with resistanceRB. 

For convenience let us introduce a temporary variable V as the voltage at the node ‘o’. Then the current through 

the parallel combination of RB and RC would be equal to 
 
 
 

 

 
Then applying KCL at the node ‘o’ we get 
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Next applying KVL at input port we get V1 = I1.RA+ V and V1/ I1 = RA+V/ I1 Now using the 

value of V we obtained above in this expression for V1/ I1 we get 

 
 

 

 
Again from inspection of the figure above it is evident that 

 
 
 
 

Therefore 
 
 
 

 

 
2). Next we will find out h12 and h22 which aregiven by thecommon condition I1 = 0 (Input open 
circuited) 

Now since I1 is zero , the current source disappears and the circuit becomes simpler as shown in the figure 
below. 
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Now applying KVL at the output port we get: 
 
 
 

 

 
Again under thiscondition: 

 
 
 

Example 9 : Z parameters of the lattice network shown in the figure below. 
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First we shall redraw the given lattice network in a simpler form for easy analysis as shown below. 
 

 
 

Wewillthen findoutZ11andZ21whicharegivenbythecommonconditionI2=0(Output open circuited ) 
 

 
Itcanbeobservedthattheimpedancesinthetwoarms‘ab’ and‘xy’ aresamei.eZ1 +Z2 and their parallel 
combination is ( Z1 + Z2 )/2 

Hence applying KVL at the input port we get 
 
 

Next we find that 
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( VC and VD being the potentials at points ‘c’ and ‘d’ ) 
 

It can also be observed from the simplified circuit that the currents I3 and I4 through the branches ‘ab’ and 
‘xy’ are equal since the branch impedances are same and same voltage V1 is applied across both the 
branches. Hencethe current I divides equally as I3 and I4 

i.e I3 = I4 = I/2 

Now substituting these values of I3 and I4 in the expression for V2 above: 
 
 
 

 

 
As can be seen the circuit is both symmetrical and Reciprocal and hence : 
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Example 10: Find the transmission parameters of the following network (fig 12.51) 
 
 
 

 

 
First let us write down the basic ABCD parameter equations and give their definitions. 

 

 
V1 =A.V2 –B.I2 I1 

=C.V2 –D.I2 

 

 
A = V1/V2   with I2 = 0 

C = I1/V2     with I2 = 0 

B = V1/−I2 with V2 = 0 

D = I1/−I2 with V2 = 0 

1).WewillthenfindoutAandCwhicharegivenbythecommonconditionI2=0(Outputopen circuited) 

 
The resulting circuit in this condition is redrawn below. 
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Applying KVL we can write down the two mesh equations and get the values of A and C : 
 
 
 

 
 
 

2.) Next we will find out Band Dwhich aregiven by thecommon condition V2 = 0 (Output short circuited) 
 

 
The resulting simplified network in this condition is redrawn below. 
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The voltage at the input port is given by : V1 = I1 x1 + (I1 + I2) x2 

i.e. V1 = 3I1+2I2 ................................................... (i) 

And the mesh equation for the closed mesh through ‘cd’ is given by : 0 = I2 x1 

+ (I1 + I2) x2 or 3 I2 + 2 I1 = 0 or 

I1 = -(3/2). I2 ..................................................(ii) 

Using equation (ii) in the equation (i) above we get : 
 
 
 

V1 = -(9/2) I2 + 2I2 = -(5/2)I2 

Or V1 /-I2 = B = (5/2) 
 

And from equation (ii) above we can directly get 
 

 
I1 /- I2 = D = 3/2 

 

 
Hence the transmission parameters can be written in matrix notation as : 
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Here we can see that AD – BC = 1 and A ≠ D 
 
 
 

Hence the network is Symmetrical but not Reciprocal. 
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UNIT-III: 
Locus diagrams: 

 Resonance and Magnetic Circuits: 

 Locus diagrams – Series and Parallel RL, RC, RLC circuits with variation 

of various parameters – 
 Resonance-Series and Parallel circuits, 

 Concept of band width and quality factor. 

 Magnetic Circuits- Faraday’s laws of electromagnetic induction, 

 Concept of self and mutual inductance, 

 Dot convention, Coefficient of coupling, 

 Composite magnetic circuits, 

 Analysis of series and parallel magnetic circuits. 
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Locus Diagrams with variation of various parameters: 

Introduction: In AC electrical circuits the magnitude and phase of the current vector depends upon the values of R,L&C when the 

applied voltage and frequency are kept constant. The path traced by the terminus (tip) of the current vector when the parameters 

R,L&C are varied is called the current Locus diagram . Locus diagrams are useful in studying and understanding the behavior of the 

RLC circuits when one of these parameters is varied keeping voltage and frequency constant. 

In this unit, Locus diagrams are developed and explained for series RC,RL circuits and Parallel LC circuits along with their internal 

resistanceswhentheparametersR,LandCarevaried. 

The term circle diagram identifies locus plots that are either circular or semicircular. The defining equations of such circle 

diagramsarealsoderived in thisunit forseriesRCand RL diagrams. 

In both series RC,RL circuits and parallel LC circuits resistances are taken to be in series with L and C to highlight the fact that all 

practical L and C components will have at least a small value of internal resistance. Series RL circuit with varying Resistance 

R: 

Refer to the series RL circuit shown in the figure (a) below with constant XL and varying R. The current IL lags behind the applied 

voltage V by a phase angle Ɵ = tan-1(XL/R) for a given value of R as shown in the figure (b) below. When R=0 we can see that the current 

is maximum equal to V/XL and lies along the I axis with phase angle equal to 900. When R is increased from zero to infinity the 

current gradually reduces from V/XL to 0 and phase angle also reduces from 900 to 0° 

As can be seen from the figure, the tip of the current vector traces the path of a semicircle 

With its diameter along the +ve I axis. 

 

 

 

Fig 4.1(a): Series RL circuit with Fig 4.1(b): Locus of current vector IL 

with variation of R Varying Resistance R 
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The related equations are: 

IL = V/Z Sin Ɵ = XL/Z or Z = XL/ Sin Ɵ and Cos Ɵ = R / Z 

Therefore IL = (V/XL) Sin Ɵ 

For constant V and XL the above expression for ILis the polar equation of a circle with diameter (V/XL) as shown in 

the figure above. 

 
Circle equation for the RL circuit: (with fixed reactance and variable Resistance): 

 

 

The Xand Ycoordinatesofthe current ILare IX = IL 

SinƟ IY = IL Cos Ɵ 

From the relations given above and earlier we get 
 

 IX =(V/Z)(XL/Z) = VXL/Z2 -------- (1) 

and IY =(V/Z)(R/Z) = V R/Z2 -------- (2) 

Squaring and adding the above two equations we get 

 
 

I 2+I 2 = V2(X 2+R2)/ Z4= (V2Z2)/ Z4 = V2/Z2 --------------------------------- (3) 

X Y L 

 
From equation (1) above we have Z2 = V XL / IX and substituting this in the above equation (3) we get: 

IX
2+IY

2 = V2/ (VXL / IX ) = (V/XL)IX or 

IX
2+IY

2 −(V/XL)IX = 0 

Adding (V/2XL)2 to both sides ,the above equation can be written as 

[IX−V/2XL]2+IY
2= (V/2XL)2 ---------------------------------------- (4) 

Equation (4) above represents a circle with a radius of (V/2XL) and with it’s coordinates of the 

centre as (V/2XL , 0) 

 

 

Series RC circuit with varying Resistance R: 
 
 

Refer to the series RC circuit shown in the figure (a) below with constant XC and varying R. The current IC leads the 
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applied voltage V by a phase angle Ɵ = tan-1(XC/R) for a given value of R as shown in the figure (b) below.WhenR=0 

wecanseethatthecurrentismaximumequalto− V/XC and liesalongthe negative Iaxis with phase angle equalto− 

900. When R is increased from zero to infinity the current gradually reduces from −V/XC to 0 and phase angle 

also reduces from −900 to 00. As can be seen from the figure, the tip of the current vector traces the path of a semicircle 

but nowwithitsdiameteralongthenegative Iaxis. 

 
Circle equation for the RC circuit: (with fixed reactance and variable Resistance): 

 

 

Inthesameway aswegotforthe SeriesRLcircuitwithvaryingresistancewecangetthecircle equation for an RC 

circuit with varying resistance as : 

[IX + V/2XC ]2+ IY
2 = (V/2XC)2 

 

 
whose coordinates of the centre are (−V/2XC , 0) and radius equal to V/2XC 



 

 

 

 
 

 
Fig4.2(a): Series RCcircuit with Fig4.2(b):LocusofcurrentvectorIC 

VaryingResistanceR  with variation ofR 

 

Series RL circuit with varying Reactance XL: 
 
 

Refer to the series RL circuit shown in the figure (a) below with constant R and varying XL. The current IL lags 
behind the applied voltage V by a phase angle Ɵ = tan-1(XL/R) for a given value of R as shown in the figure (b) 
below. When XL =0 we can see that the current is maximum equal to V/R and lies along the +ve V axis with 
phase angle equal to 00. When XL is increased from zero to infinity the current gradually reduces from V/R to 
0 and phase angle increases from 00 to 900. As can be seen from the figure, the tip of the current vector 
traces the path of a semicircle with its diameter along the +ve V axis and on to its right side. 

 

 
Fig 4.3(a): Series RL circuit with varying XL Fig 4.3(b) : Locus of current vector IL with variation of XL 
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Series RC circuit with varying Reactance XC: 
 
 

Refer to the series RC circuit shown in the figure (a) below with constant R and varying XC. The current IC leads the 
applied voltage V by a phase angle Ɵ= tan-1(XC/R) for a given value of R as shown in the figure 
(b) below. When XC =0 we can see that the current is maximum equal to V/R and lies along the V axiswith 
phase angle equal to 00. When XC is increased from zero to infinity the current gradually reduces from V/R to 0 
and phase angle increases from 00 to −900. As can be seen from the figure, the tip of the current vector traces the 
path of a semicircle with its diameter along the +ve V axis but now on to its left side. 

 

Fig4.4(a):SeriesRCcircuitwithvaryingXC    Fig4.4(b):LocusofcurrentvectorIC with variation of XC 

 

Parallel LC circuits: 
 

Parallel LC circuit along with its internal resistances as shown in the figures below is considered here for 
drawing the locus diagrams. As can be seen, there are two branch currents IC and IL along with the total 
current I. Locus diagrams of the current IL or IC (depending on which arm is varied)and the total current I 
are drawn by varying RL, RC , XL and XC one by one. 

 

Varying XL: 



BT.Theechcu(ErCreEn) t IC through the capacitor is constant since RC and C are fixed and it leads the voltage vecRt-o18r OV 

 

      

 

by an angle ƟC = tan-1(XC/RC) as shown inthe figure (b). The current IL through the inductance is the vector OIL . 
It’s amplitude is maximum and equal to V/RL when XL is zero and it is in phase with the applied voltage 
V. When XL is increased from zero to infinity it’s amplitude decreases to zero and phase will be lagging the  voltage 
by 900. In between, the phase angle will be lagging the voltage V by an angle ƟL = tan-1 (XL/RL). The locus of 
the current vector IL is a semicircle with a diameter of length equal to V/RL. Note that this is the same locus 
what we got earlier for the series RL circuit with XL varying except that here V is shown horizontally. 
Now, to get the locus of the total current vector OI we have to add vectorially the currents IC and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we will 

take varying amplitude vector IL)at the tip of the other vector (we will take constant amplitude vector 
IC)and then join the start of fixed vector IC to the end of varying vector IL. Using this principle we can get the 
locus of the total current vector OI by shifting the IL semicircle starting point O to the end of current vector 
OIC keeping the two diameters parallel. The resulting semi circle ICIBT shown in the figure in dotted lines is 

the locus of the total current vector OI. 

 

 
 

 
Fig 4.5(b): Locus of current vector I in Parallel LC circuit when XL is varied from 0 to ∞ 

 
 

Varying XC: 
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Fig.4.6(a) parallel LC circuit with Internal Resistances RL and RC in series 
with L (fixed) and C (Variable) respectively. 

 
 

The current IL through the inductor is constant since RL and L are fixed and it lags the voltage vector OV by an 
angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current IC through the capacitance is the vector OIC . 
It’s amplitude is maximum and equal to V/RC when XC is zero and it is in phase with the applied voltage V. When 
XC is increased from zero to infinity it’s amplitude decreases to zero and phase will be leading the voltage by 
900. In between, the phase angle will be leading the voltage V by an angle ƟC = tan-1 (XC/RC). The locus of the 
current vector IC is a semicircle with a diameter of length equal to V/RC as shown in the figure below. Note that 
this is the same locus what we got earlier for the series RC circuit with X C varying except that here V is 
shown horizontally. 
Now, to get the locus of the total current vector OI we have to add vectorially the currents IC and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we will 

take varying amplitude vector IC)at the tip of the other vector (we will take constant amplitude vector IL) and 
then join the start of the fixed vector IL to the end of varying vector IC. Using this principle we can get the 
locus of the total current vector OI by shifting the IC semicircle starting point O to the end of current vector 
OIL keeping the two diameters parallel. The resulting semicircle ILIBT shown in the figure in dotted lines is 
the locus of the total current vector OI. 
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Fig4.6 (b) : Locus of current vector I in Parallel LC circuit when XC is varied from 0 to ∞ 
 
 

Varying RL: 

 
The current IC through the capacitor is constant since RC and C are fixed and it leads the voltage vector OVby an 
angle ƟC = tan-1 (XC/RC) as shown in the figure (b). The current IL through the inductance is the vector OIL . It’s 
amplitude is maximum and equal to V/XL when RL is zero. Its phase will be lagging the voltage by 900. When 
RL is increased from zero to infinity it’s amplitude decreases to zero and it is in phase with the applied 
voltage V. In between, the phase angle will be lagging the voltage V by an angle ƟL = tan-1 (XL/RL). The locus 

of the current vector IL is a semicircle with a diameter of length equal to V/RL. Note that this is the same locus 
what we got earlier for the series RL circuit with R varying except that here V is shown horizontally. 
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Fig. 4.7(a)parallelLC circuitwithInternalResistances RL(Variable) andRC(fixed) inseries with L and C 
respectively. 

Now, to get the locus of the total current vector OI we have to add vectorially the currents I C and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we will 

take varying amplitude vector IL)at the tip of the other vector (we will take constant amplitude vector 
IC)and then join the start of fixed vector IC to the end of varying vector IL. Using this principle we can get the 
locus of the total current vector OI by shifting the IL semicircle starting point O to the end of current vector 
OIC keeping the two diameters parallel. The resulting semicircle ICIBT shown in the figure in dotted lines is 
the locus of the total current vector OI. 

 

 

 
Fig 4.7(b) : Locus of current vector I in Parallel LC circuit when RL is varied from 0 to ∞ 

 
 

Varying RC: 

B.Tech (ECE) R-18 



Malla Reddy College of Engineering and Technology(MRCET) 

 

 

 

Fig. 4.8(a) parallel LC circuit with Internal Resistances RL (fixed) and RC 

(Variable)   in series 
with L and C respectively. 

 

The current IL through the inductor is constant since RL and L are fixed and it lags the voltage vector OV by an 
angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current IC through the capacitance is the vector OIC . 
It’s amplitude is maximum and equal to V/XC when RC is zero and its phase will be leading the voltage by 900 . 
When RC is increased from zero to infinity it’s amplitude decreases to zero and it will be in phase with the 

applied voltage V. In between, the phase angle will be leading the voltage V by an angle ƟC = tan-1 (XC/RC). The 

locus of the current vector IC is a semicircle with a diameter of length equal to V/XC as shown in the figure 
below. Note that this is the same locus what we got earlier for the series RC circuit with R varying except 
that here V is shown horizontally. 

 
Now, to get the locus of the total current vector OI we have to add vectorially the currents IC and IL . We 

know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we will 

take varying amplitude vector IC)at the tip of the other vector (we will take constant amplitude vector IL) and 
then join the start of the fixed vector IL to the end of varying vector IC. Using this principle we can get the 
locus of the total current vector OI by shifting the IC semicircle starting point O to the end of current vector 
OIL keeping the two diameters parallel. The resulting semicircle ILIBT shown in the figure in dotted lines is 

the locus of the total current vector OI. 
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Fig 4.8(b) : Locus of current vector I in Parallel LC circuit when RC is varied from 0 to ∞ 
 
 

Resonance: 
 

Series RLC circuit: 

The impedance of the series RLC circuit shown in the figure below and the current I through the circuit are given 
by : 

 

Z= R+jωL+1/jωC = R+j(ωL− 1/ωC) I = 
Vs/Z 

 

Fig 4.9: Series RLC circuit 

The circuit is said to be in resonance when the Inductive reactance is equal to the Capacitive reactance. 
i.e. XL = XC or ωL = 1/ωC. (i.e. Imaginary of the impedance is zero) The frequency at which the 
resonance occurs is called resonant frequency. In the resonant condition when XL 

= XC they cancel with each other since they are in phase opposition(1800 out of phase) and net impedance of the circuit is 
purely resistive. In this condition the magnitudes of voltages across 
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the Capacitance and the Inductance are also equal to each other but again since they are of opposite 
polarity they cancel with each other and the entire applied voltage appears across the Resistance alone. 

Solving for the resonant frequency from the above condition of Resonance : ωL = 1/ωC 

2πfrL = 1/2πfrC 

f 2 = 1/4π2LC and f = 1/2π√LC 
In a series RLC circuit, resonance may be produced by varying L or C at a fixed frequency or by varying  
frequency at fixed L and C. 

 
Reactance, Impedance and Resistance of a Series RLC circuit as a function of frequency: 

 

From the expressions for the Inductive and capacitive reactance we can see that when the frequencyis zero, 
capacitance acts as an open circuit and Inductance as a short circuit. Similarly when the frequency is infinity 
inductance acts as an open circuit and the capacitance acts as a short circuit. The variation of Inductive and 
capacitive reactance along with Resistance R and the Total Impedance are shown plotted in the figure 
below. 
As can be seen, when the frequency increases from zero to ∞ Inductive reactance XL (directly proportional to 
ω) increases from zero to ∞ and capacitive reactance XC (inversely proportional to ω) decreases from 
−∞ to zero. Whereas, the Impedance decreases from ∞ to Pure Resistance R as the frequency 

increases from zero to fr( as capacitive reactance reduces from 
−∞ and becomes equal to Inductive reactance ) and then increases from R to ∞ as the frequency 
increases from fr to ∞ (as inductive reactance increases from its value at resonant frequency to ∞ ) 

 

 
Fig 4.10: Reactance and Impedance plots of a Series RLC circuit 

 
Phase angle of a Series RLC circuit as a function of frequency: 
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Fig4.11 : Phase plot of a Series RLC circuit 

 
The following points can be seen from the Phase angle plot shown in the figure above: 

 
At frequencies below the resonant frequency capacitive reactance is higher than the inductivereactanceand 

hencethephaseangleofthecurrentleadsthevoltage. 

As frequency increases from zero to fr the phase angle changes from -900to zero. 

At frequencies above the resonant frequency inductive reactance is higher than the capacitivereactanceand 

hencethephaseangleofthecurrentlagsthevoltage. 

 As frequency increases from fr and approaches ∞, the phase angle increases from zero and approaches900 
 

Band width of a Series RLC circuit: 

The band width of a circuit is defined as the Range of frequencies between which the output power is half 

of or 3 db less than the output power at the resonant frequency. These frequencies are called the 

cutoff frequencies, 3db points or half power points. But when we consider the output voltage or 
current, the range of frequencies between which the output voltage or current falls to 0.707 times of the  

value at the resonant frequency is called the Bandwidth BW. This is because voltage/current are  

related to power by a factor of √ 2 and when we are consider √ 2 times less it becomes 0.707. But still these 
frequencies are called as cutoff frequencies, 3db points or half power points. The lower end frequency 

is called lower cutoff frequency and the higher end frequency is called upper cutoff frequency. 
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Fig 4.12: Plot showing the cutoff frequencies and Bandwidth of a series RLC circuit 

 
Derivation of an expression for the BW of a series RLC circuit: 

 
We know that BW = f2 – f1 Hz 

 

If the current at points P1 and P2 are 0.707 (1/√ 2) times that of I max ( current at the resonant frequency) 

then the Impedance of the circuit at points P1 and P2 is√ 2 R ( i.e. √ 2 times the impedance at fr) 

But Impedance at point P1 is given by: Z = √ R2 + (1/ω1C – ω1L )2 and equating this to √ 2 R 

 

2L – 1/ω2C )2 and equating this to 

 

Equating the above equations (1) and (2) we get: 

1/ω1C–ω1L =  ω2L – 1/ω2C 

Rearranging we get L( ω1+ ω2) = 1/C [( ω1+ ω2)/ ω1ω2] i.e ω1ω2 = 1/LC 

But we already know that for a series RLC circuit the resonant frequency is given by ω 2 = 1/LC Tr herefore: ω1ω2 

= ω 2 ---- (3) and 1/C = ω 2L (4) 

Next adding the above equations (1) and (2) we get: 

1/ω1C– ω1L+ ω2L–1/ω2C = 2R 

(ω2 –ω1)L+(1/ω1C–1/ω2C) = 2R 

(ω2 – ω1)L+ 1/C[(ω2 – ω1)/ω1ω2) = 2R ------ (5) 

Using the values of ω1ω2 and 1/C from equations (3) and (4) above into equation (5) above we get: (ω2 

– ω1)L + ω 2L [(ω2 – ω1)/ ω 2) = 2R 
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we get : (1/ω1C) – ω1L = R ------ (1) 

Similarly Impedance at point P2 is given b 
√ 2 Rweget: ω2L – (1/ω2C) =R 

y: Z = √ 
------ 

R2 + ( ω 

(2) 
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Bi..eT.ech (ECE) 2L (ω2 – ω1)  =  2R i.e.  (ω2 – ω1) =  R/L and (f2 – f1) =  R/2πL  ----- R-18(6) 
 

 

OrfinallyBandwidth BW = R/2πL ------------------------------------------- (7) 
 

Since fr lies in the centre of the lower and upper cutoff frequencies f1 and f2 using the above equation (6) we 
can get: 

 

f1 = fr – R/4πL ------ (8) 

f2 = fr + R/4πL ------ (9) 

Further by dividing the equation (6) above by fr on both sides we get another important 

relation: (f2 – f1) / fr = R/2π fr L or BW / fr = R/2π fr L ---------------- (10) 
 

Here an important property of a coil i.e. Q factor or figure of merit is defined as the ratio of the 

reactance to the resistance of a coil. 
 

Q = 2π fr L / R ------------------------------- (11) 
 

Now using the relation (11) we can rewrite the relation (10) as 

Q = fr / BW --------------------------------- (12) 

 
 
 

Quality factor of a series RLC circuit: 
 

The quality factor of a series RLC circuit is defined as: 

Q = Reactive power in Inductor (or Capacitor) at resonance /Average power at Resonance 

 

 
Reactive power in Inductor at resonance = I2XL 

Reactive power in Capacitor at resonance = I2XC 

Average power at Resonance = I2R 

Herethepowerisexpressedintheform I2X (notasV2/X)sinceIiscommonthroughR.LandC in the series RLC 

circuit and it gets cancelled during the simplification. 

Therefore Q = I2XL / I2R = I2XC / I2R 
 

i.e.  Q  =  XL / R  =  ωr L/ R  ------------------------------------- (1) 
 

Or    Q = XC / R = 1/ωr RC ---------------------------------- (2) 
 

From these two relations we can also define Q factor as : 



Q = Inductive (or Capacitive ) reactance at resonance / Resistance B.Tech (ECE) R-18 
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Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can get the value of Q 

in terms of R, L,C as below. 

 
Q  =   (1/√LC) L/ R = (1/R) (√L/C) 

 

 

Selectivity: 
 

Selectivity of a series RLC circuit indicates how well the given circuit responds to a given resonant  
frequency and how well it rejects all other frequencies. i.e. the selectivity is directly proportional to Q factor. A 
circuit with a good selectivity (or a high Q factor) will have maximum gain at the resonant frequency and will  
have minimum gain at other frequencies .i.e. it will have very low band width. This is illustrated in the  
figure below. 

 
 
 

 
Fig 4.13: Effect of quality factor on bandwidth Voltage Magnification at resonance: 

 
At resonance the voltages across the Inductance and capacitance are much larger than the applied  voltage 
in a series RLC circuit and this is called voltage magnification at Resonance. The voltage magnification 
is equal to the Q factor of the circuit. This is proven below. 
If we take the voltage applied to the circuit as V and the current through the circuit at resonance as 

I then 
ThevoltageacrosstheinductanceL is: VL = IXL = (V/R) ωr L and 

ThevoltageacrossthecapacitanceC is: VC = IXC = V/R ωr C 

But we know that the Q of a series RLC circuit = ωr  L/ R = 1/R ωr  C UsingtheserelationsintheexpressionsforVL and 
VC givenaboveweget VL = VQ and VC =VQ 

The ratio of voltage across the Inductor or capacitor at resonance to the applied voltage in a series RLC 

circuit is called Voltage magnification and is given by 
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Magnification = Q = VL/V or VC / V 
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Important points In Series RLC circuit at resonant frequency : 
 
 

The impedance of the circuit becomes purely resistive and minimum i.e Z = R 

The current in the circuit becomes maximum 

ThemagnitudesofthecapacitiveReactanceandInductiveReactancebecomeequal 

The voltage across the Capacitor becomes equal to the voltage across the Inductor at resonance and is Q times 

higher than the voltage across the resistor 

 

Bandwidth and Q factor of a Parallel RLC circuit: 

 
Parallel RLC circuit is shown in the figure below. For finding out the BW and Q factor of a parallel 
RLC circuit, since it is easier we will work with Admittance , Conductance and Susceptance 
insteadofImpedance,ResistanceandReactancelikeinseriesRLCcircuit.  

 

 

 
Fig 4.14 : Parallel RLC circuit 

 
Thenwe havetherelation: Y = 1/Z = 1/R + 1/jωL + jωC = 1/R + j ( ωC − 1/ωL) 

 

For the parallel RLC circuit also, at resonance, the imaginary part of the Admittance is zero and hence the 

frequency at which resonance occurs is given by: ωrC − 1/ωrL = 0 . From this we get :  ωrC  = 1/ωrL 

and ωr = 1/√LC 
which is the same value for ωr as what we got for the series RLC circuit. 

 
At resonance when the imaginary part of the admittance is zero the admittance becomes 
minimum.( i.e Impedance becomes maximum as against Impedance becoming minimum in series RLC 
circuit ) i.e. Current becomes minimum in the parallel RLC circuit at resonance ( as against current 
becoming maximum in series RLC circuit) and increases on either side of the resonant frequency as shown 
in the figure below. 
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Fig 4.15: Variation of Impedance and Current with frequency in a Parallel RLC circuit 

 
Here also the BW of the circuit is given by BW = f2-f1 where f2 and f1 are still called the upper and lower cut off 
frequencies but they are 3db higher cutoff frequencies since we notice that at these cutoff frequencies the 

amplitude of the current is √2 times higher than that of the amplitude of current at the resonant 

frequency. 

The BW is computed here also on the same lines as we did for the series RLC circuit: 
 

If the current at points P1 and P2 is √ 2 (3db) times higher than that of Imin( current at the resonant 

frequency) then the admittance of the circuit at points P1 and P2 is also √ 2 times higher than the 

admittance at fr) 

But amplitude of admittance at point P1 is given by: Y = √ 1/R2 + (1/ω1L-ω1C )2 andequating this to √ 2 /R we 

get 

1/ω1L − ω1C = 1/R ---------------- (1) 
 

Similarly amplitude of admittance at point P2 is given by: Y = √ 1/R2 + (ω2C − 1/ω2L)2 and equating this to √ 

2 /R we get 

ω2C − 1/ω2L = 1/R ------------ (2) 

Equating LHS of (1) and (2) and further simplifying we get 

1/ω1L − ω1C = ω2C − 1/ω2L 

1/ω1L + 1/ω2L = ω1C + ω2C 

1/L [(ω1  + ω2)/ ω1ω2] = (ω1 + ω2)C 

1/L C = ω1ω2 

B.Tech (ECE) R-18 
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Next adding the equations (1) and (2) above and further simplifying we get 
 

1/ω1L – ω1C + ω2C − 1/ω2L = 2/R (ω2C – 

ω1C) + (1/ω1L – 1/ω2L) = 2/R 

(ω2 – ω1)C+ 1/L[(ω2 – ω1)/ ω1ω2] = 2/R Substituting 

the value of ω1ω2 = 1/LC 

(ω2 − ω1)C + LC/L [(ω2 − ω1)] = 2/R (ω2 

−ω1)C+ C[(ω2 −ω1)] = 2/R 2 C 

[(ω2 − ω1)] = 2/R 

Or [(ω2 − ω1)] = 1/RC 

From which we get the band width BW = f2-f1 = 1/2π RC 
 

Dividingbothsidesbyfr weget: (f2-f1)/ fr = 1/2π fr RC ---------- (1) 

Quality factor of a Parallel RLC circuit: 

 

 
The quality factor of a Parallel RLC circuit is defined as: 

Q = Reactive power in Inductor (or Capacitor) at resonance /Average power at Resonance 
 

Reactive power in Inductor at resonance = V2/XL 

Reactive power in Capacitor at resonance = V2/XC 

Average power at Resonance = V2/R 

Here the power is expressed in the form V2/X (not as I2X as in series circuit) since V is common across R,L 
andCintheparallel RLCcircuitanditgetscancelledduringthesimplification. 

Therefore Q = (V2/XL) / (V2/R) = (V2/XC) / (V2/R) 

 

i.e. Q = R/ XL = R /ωr L ----- (1) 

Or Q = R/ XC =ωr RC ----- (2) 
 

From these two relations we can also define Q factor as : 
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Q = Resistance /Inductive (or Capacitive ) reactance at resonance 
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Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can get the value of Q 

in terms of R, L,C as below. 

 
Q  =   (1/√LC) RC = R (√C/L) 

 

Furtherusingtherelation Q = ωr RC ( equation 2above)intheearlierequation(1)wegotin BWviz. (f2-f1)/ fr = 

1/2πfr RC weget: (f2-f1)/ fr = 1/Q or Q = fr / (f2-f1) = fr / BW 

i.e. In Parallel RLC circuit also the Q factor is inversely proportional to the BW. 
 

 
Admittance, Conductance and Susceptance curves for a Parallel RLC circuit as a function of frequency : 

 The effect of varying the frequency on the Admittance, Conductance and Susceptance of a parallel 
circuit is shown in the figure below. 

 InductivesusceptanceBL isgivenbyBL = - 1/ωL. Itisinverselyproportionaltothefrequencyω 

and is shown in the in the fourth quadrant since it is negative. 
 Capacitive susceptance BC is given by BC = ωC. It is directly proportional to the frequency ω 

and is shown in the in the first quadrant as OP .It is positive and linear. 

 NetsusceptanceB = BC- BL andisrepresentedbythecurveJK.Ascanbeseenitiszeroatthe resonant frequency fr 

 The conductance G = 1/R andis constant 

 The total admittance Y and the total current I are minimum at the resonant frequency as shown by the curve VW 
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Fig4.16:Conductance,SusceptanceandAdmittanceplotsofaParallelRLCcircuit Current 

magnification in a Parallel RLC circuit: 

Justas voltage magnification takesplace across the capacitance and Inductanceattheresonant frequency in a 
series RLC circuit, current magnification takes place in the currents through the capacitance and Inductance 
at the resonant frequency in a Parallel RLC circuit. This is shown below. 

Voltage across the Resistance = V = IR 
 

CurrentthroughtheInductanceatresonanceIL = V/ ωr L = IR/ ωr L = I . R/ ωr L = IQ Similarly 

 
CurrentthroughtheCapacitanceatresonanceIC = V/ (1/ωr C) =IR/ (1/ωr C) = I(R ωr C) = IQ 

 

From which we notice that the quality factor Q = IL / I or IC / I and that the current through the inductance 
and the capacitance increases by Q times that of the current through the resistor at resonance. . 

Important points In Parallel RLC circuit at resonant frequency : 
 

 The impedance of the circuit becomes resistive and maximum i.e Z = R 

 The current in the circuit becomes minimum 

 The magnitudes of thecapacitive Reactanceand Inductive Reactance become equal 

 Thecurrentthrough theCapacitorbecomesequalandoppositetothecurrentthroughthe Inductor 

atresonance andisQtimeshigherthan the currentthroughthe resistor 

Magnetic Circuits: 
 

Introduction to the Magnetic Field: 
 

Magnetic fields are the fundamental medium through which energy is converted from one form to another in 
motors, generators and transformers. Four basic principles describe how magnetic fields are used in 
these devices. 

0. A current-carrying conductor produces a magnetic field in the area around it. 
Explained in Detail by Fleming’s Right hand rule and Amperes Law. 

1. Atimevaryingmagneticflux induces avoltageina coilof wireifitpassesthroughthatcoil. (basis 

of Transformeraction) 

Explained in detail by the Faradays laws of Electromagnetic Induction. 

2. Acurrent carrying conductor inthe presence of a magnetic field has a force inducedin it ( Basis of Motor action) 
3. A moving wire in the presence of a magnetic field has a voltage induced in it ( Basis of Generator action) 
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Wewillbestudyinginthisunitthefirsttwoprinciplesindetailandtheothertwoprinciplesin  the next  unit 
on DC machines. 

Twobasiclawsgoverningtheproductionofamagneticfieldbyacurrentcarryingconductor: 
 

The direction of the magnetic field produced by a current carrying conductor is given by the 
Flemings Right hand rule and its’ amplitude is given by the Ampere’s Law. 

 

Flemings right hand rule: Holdtheconductor carrying thecurrentinyourright hand suchthat 

the Thumb points along the wire in the direction of the flow of current, then the fingers will 

encircle the wire along the lines of the Magnetic force. 
 
 

Ampere’s Law : The line integral of the magnetic field intensity H around a closed magnetic  

path is equal to the total current enclosed by the path. 

 
 

This is the basic law which gives the relationship between the Magnetic field Intensity H and the current I 
and is mathematically expressed as 

 

𝑯. 𝒅𝒍 = I net 

 

where H is the magnetic field intensity produced by the current Inet and dl is a differential element of 
length alongthe path of integration. H is measuredin Ampere-turns per meter. 

Important parameters and their relation in magnetic circuits : 
 

 Consider a current carrying conductor wrapped around a ferromagnetic core as shown in the figure below. 
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 Applying Ampere’s law, the total amount of magnetic field induced will be proportional to the amount of 
current flowing through the conductor wound with N turns around the ferromagnetic material as 
shown. Since the core is made of ferromagnetic material, it is assumed that a majority of the magnetic 
field will be confined to the core. 

 The path of integration in this case as per the Ampere’s law is the mean path length of the core, lC. The current 
passing withinthepathofintegrationInet isthen Ni,sincethecoilof wirecuts thepathofintegrationN 

timeswhilecarrying thecurrenti.HenceAmpere’sLawbecomes: Hlc = Ni 

Therefore H  =  Ni/lc 

 
 
 
 In this sense, H (Ampere turns per meter) is known as the effort required to induce a magnetic field. The 

strength of the magnetic field flux produced in the core also depends on the material of the core. Thus: B = µH 

where 

B = magnetic flux density [webers per square meter, or Tesla (T)] 

μ= magnetic permeability of material (Henrys per meter) 

H = magnetic field intensity (ampere-turns per meter) 

 The constant µ may be further expanded to include relative permeability which can be defined as below: 

µr = µ /µo 

where µo = permeability of free space (equal to that of air) 

 Hence the permeability value is a combination of the relative permeability and the permeability of free space. 
The value of relative permeability is dependent upon the type of material used. The higher the amount 
permeability, thehigherthe amount of flux induced in the core. Relative permeability is a convenient way to 
compare the magnetizability of materials. 

 Also, because the permeability of iron is so much higher than that of air, the majority of the flux in an iron core 

remains inside the core instead of travelling through the surrounding air, which has lower permeability. 
The small leakage fluxthatdoesleavetheironcoreisimportantin 
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determining the flux linkages between coils and the self-inductances of coils in transformers and motors. 
 In a core such as shown in the figure above 

 

B = µH  = µ Ni/lc 

 

Now, to measure the total flux flowing in the ferromagnetic core, consideration has to be made in terms 

of its cross sectional area (CSA). Therefore: 

 

Φ = 𝑩. 𝒅𝑨 where: A = cross sectional area throughout the core. 

Assumingthatthefluxdensityintheferromagneticcoreisconstantthroughouthence the equation 

simplifies to: Φ = B.A 

Takingthepreviousexpressionfor B we get Φ = µ NiA/lc 

 
 
 

Electrical analogy of magnetic circuits: 
 

The flow of magnetic flux induced in the ferromagnetic core is analogous to the flow of electric current in an 
electrical circuit hence the name magnetic circuit. 

 

 
The analogy is as follows: 

 
 
 

 

 
(a) ElectricCircuit (b) Electrical Analogy of Magnetic Circuit 
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Referring to the magnetic circuit analogy, F is denoted as magnetomotive force (mmf) which is similar to 

Electromotive force in an electrical circuit (emf). Therefore, we can say that F is the force which pushes magnetic 

flux around a ferromagnetic core with a value of Ni (refer to ampere’s law). Hence F is measured in ampere turns. 

Hence the magnetic circuit equivalent equation is asshown: 

F = Ø.R (similar to V=IR) 
 

We already have the relation Φ = µ NiA/l and using this we get R = F / Φ = Ni/ Φ 
 

R = Ni /( µ NiA/l) = l/ µ A 
 

 The polarity of the mmf will determine the direction of flux. To easily determine the direction of flux, the 
‘right hand curl’ rule is applied: 

Whenthedirectionofthecurledfingersindicatesthedirectionofcurrentflowthe resulting thumb direction 
willshowthemagnetic flux flow. 

 The element of R in the magnetic circuit analogy is similar in concept to the electrical resistance. 
It is basically the measure of material resistance to the flow of magnetic flux. Reluctance in this analogy 
obeys the rule of electrical resistance (Series and Parallel Rules). Reluctance is measured in Ampere-

turns per weber. 

 The inverse of electrical resistance is conductance which is a measure of conductivity of a material. 
Similarly the inverse of reluctance is known as permeance P which represents the degree to which the 
material permits the flow of magnetic flux. 

 

 
 By using the magnetic circuit approach, calculations related to the magnetic field in a 

ferromagnetic material are simplified but with a little inaccuracy. 
 

 

 
Equivalent Reluctanceof a series Magneticcircuit : Reqseries = R1 + R2 + R3 + …. 

 

 

Equivalent Reluctance of a Parallel Magnetic circuit:

 1/Reqparallel = 1/R1 + 1/R2 + 

1/R3 + …. Electromagnetic Induction and Faraday’s law – 

Induced Voltage from a Time-Changing Magnetic Field: 
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Faraday’s Law: 
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Whenever a varying magnetic flux passes through a turn of a coil of wire, voltage will be 

induced in theturnofthewirethatisdirectlyproportionaltotherateofchangeof theflux 

linkage with the turn of the coil of wire. 

eind 𝖺 −dØ/dt 
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eind = −𝒌. dØ/dt 
 

The negative sign in the equation above is in accordance to Lenz’ Law which states: 

The direction of the induced voltage in the turn of the coil is such that if the coil is short  

circuited, itwould produce acurrentthat wouldcause aflux which opposestheoriginal change 

of flux. 

And k is the constant of proportionality whose value depends on the system of units chosen. In the SI  
system of units k=1 and the above equation becomes: 

eind = − dØ/dt 
 

Normallyacoilisusedwithseveralturnsandifthereare  Nnumberofturnsinthecoilwiththe   same amount of 

flux flowing through it then: eind = − 𝑵 dØ/dt 

 

 
Change in the flux linkage NØ of a coil can be obtained in two ways: 

 

1. Coil remains stationary and flux changes with time (Due to AC current like in Transformers and this is 

called Statically induced e.m.f ) 

2. Magnetic flux remains constant and stationary in space, but the coil moves relative to the magnetic field so 

as to create a change in the flux linkage of the coil ( Like in Rotating machines and this is a called 

Dynamically induced e.m.f. 

Self inductance: 
 

From the Faradays laws of Electromagnetic Induction we have seen that an e.m.f will be induced in a 
conductor when a time varying flux is linked with a conductor and the amplitude of the induced e.m.f is 
proportional to the rate of change of the varying flux. 

If the time varying flux is produced by a coil of N turns then the coil itself links with the time varying flux 
produced byitself and an emf will beinduced inthe same coil. Thisiscalled self inductance . 

The flux Ø produced by a coil of N turns links with its own N turns of the coil  and hence the total flux linkage is  

equal to NØ = (μ N2 A / l) I [using the expression Φ = µ NiA/l we already developed] Thus we see 

that the total magnetic flux produced by a coil of N turns and linked with itself is proportional to the current 

flowingthroughthe coili.e. 
 

NØ 𝖺 𝑰 or NØ = L 𝑰 
 

From the Faradays law of electromagnetic Induction, the self induced e.m.f for this coil of N turns is 
givenby: 
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eind = − 𝑵 dØ/dt = −L dI/dt 
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The constant of proportionality L is called the self Inductance of the coil or simply Inductance and its value 
is given by L = (μ N2 A / l). If the radius of the coil is r then: 

L = (μ N2 πr2 /l) i 
 

From the above two equations we can see that Self Inductance of a coil can be defined as the flux  
produced per unit current i.e Weber/Ampere (equation1) or the induced emf per unit rate of change of 
current i.e Volt-sec/Ampere (equation 2 ) 

The unit of Inductance is named after Joseph Henry as Henry and is given to these two 
combinations as : 

 

1H = 1WbA-1 = 1VsA-1
 

Self Inductance of a coil is defined as one Henry if an induced emf of one volt is generated when 

the current in the coil changes at the rate of one Ampere per second. 

Henry is relatively a very big unit of Inductance and we normally use Inductors of the size of mH ( 10 -3 H) or μH 
(10-3H) 

Mutual inductance and Coefficient of coupling: 
 

In the case of Self Inductance an emf is induced in the same coil which produces the varying magnetic field. 
The same phenomenon of Induction will be extended to a separate second coil if it is located in the vicinity of the 
varying magnetic field produced by the first coil. Faradays law of electromagnetic Induction is equally 
applicable to the second coil also. A current flowing in one coil establishes a magnetic flux about that coil and 
also about a second coil nearby but of course with a lesser intensity. The time-varying flux produced by the 
first coil and surrounding the second coil produces a voltage across the terminals of the second coil. This 
voltage is proportional to the time rate of change of the current flowing through the first coil. 

Figure (a) shows a simple model of two coils L1 and L2, sufficiently close together that the flux produced by a 
current i1(t) flowing through L1 establishes an open-circuit voltage v2(t) across the terminals of 
L2.Mutual inductance,M21, is defined such that 

v2(t) = M21di1(t)/dt ------------------ [1] 
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Figure4.17 (a)Acurrent i1throughL1producesanopen-circuit voltagev2acrossL2. (b)A currenti2 
throughL2producesanopen-circuitvoltagev1acrossL1. 

 

 
The order of the subscripts on M21 indicates that a voltage response is produced at L2 by a current source 
at L1. If the system is reversed, as indicated 

in fig.(b) then we have 
 

v1(t) = M12di2(t)/dt ------------------ [2] 
 

It can be proved that the two mutual inductances M12 and M21 are equal and thus, M12 = M21 = 
M. The existence of mutual coupling between two coils is indicated by a double-headed arrow, as shown in Fig. 
(a )and (b) 

Mutual inductance is measured in Henrys and, like resistance, inductance, and capacitance, is a positive quantity. 
The voltage M di/dt, however, may appear as either a positive or a negative quantity depending on whether 

the current is increasing or decreasing at a particular instant of time. 

Coefficient of coupling k : Is given by the relation M = k√L1 L2 and its value lies between 0 and 

1. It can assume the maximum value of 1 when the two coils are wound on the same core such that flux  
produced by one coil completely links with the other coil. This is possible in well designed cores with high 
permeability. Transformers are designed to achieve a coefficient of coupling of 1. 

 
 
 

Dot Convention: 

 

 
The polarity of the voltage induced in a coil depends on the sense of winding of the coil. In the case of  
Mutualinductanceitisindicated byuseofamethodcalled“dot convention”. Thedot 
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convention makes use of a large dot placed at one end of each of the two coils which are mutually  
coupled. Sign of the mutual voltage is determined as follows: 

A current entering the dotted terminal of one coil produces an open circuit voltage with a positive voltage 
reference at thedotted terminal of thesecond coil. 

Thus in Fig(a) i1 enters the dotted terminal of L1, v2 is sensed positively at the dotted terminal of 
L2, and v2 = M di1/dt . 

 

It may not be always possible to select voltages or currents throughout a circuit so that the passive sign 
convention is everywhere satisfied; the same situation arises with mutual coupling. For example, it may be more 
convenient to represent v2 by a positive voltage reference at the undotted terminal, as shown in Fig (b). Then v2 

= −M di1/dt . Currents also may not always enter the dotted terminal as indicated by Fig (c) and (d). Then 

we note that: 

A current entering the undotted terminal of one coil provides a voltage that is positively sensed at the 
undotted terminal of the second coil. 

 

 

 
Figure 4.18 : (a) and (b) Current entering the dotted terminal of one coil produces a voltage that is  sensed 
positively at the dotted terminal of the second coil. (c) and (d) Current entering the undotted terminal of 
one coil produces a voltage that is sensed positively at the undotted terminal of the second coil. 

ImportantConceptsandformulae: 
 

Resonance and Series RLC circuit: 
 

ωr
2 = ω1ω2 = 1/LC ∴ ωr = √ω1ω2 = 1/√LCBW = R/2πL 
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Q = ωr L / R = 1/ωr RC andinterms of R,Land C = (1/R) (√L/C) 

Q = fr / BW i.e. inverselyproportionaltotheBW 

Voltage magnification Magnification  = Q  =   VL/V or VC / V 

 
Important points In Series RLC circuit at resonant frequency: 

 

 The impedance of the circuit becomes purely resistive and minimum i.e Z = R 

 The current in the circuit becomes maximum 

 The magnitudes of thecapacitive Reactanceand Inductive Reactance become equal 

 The voltage across the Capacitor becomes equal to the voltage across the Inductor at resonance and is Q 

times higher than the voltage across the resistor 

Resonance and Parallel RLC circuit: 

 
ωr

2 = ω1ω2 = 1/LC ∴ ωr = √ω1ω2 = 1/√LC same as in series RLCcircuit 
 

BW = 1/2π RC 

 
Q = R /ωr L = ωr RC and in terms of R, L and C = R (√C/L) [Inverseofwhatwegot in 

Series RLCcircuit] 

Q = fr / BW In Parallel RLC also inversely proportional to the BW 
 

Current Magnification = Q= IL/I or IC / I 
 

Important points In Parallel RLC circuit at resonant frequency : 
 

 The impedance of the circuit becomes resistive and maximum i.e Z = R 

 The current in the circuit becomes minimum 

 The magnitudes of thecapacitive Reactanceand Inductive Reactance become equal 

 Thecurrentthrough theCapacitorbecomesequalandoppositetothecurrentthroughthe 
Inductoratresonance andisQtimeshigherthanthe currentthroughtheresistor 

Magnetic circuits : 
 

Ampere’s Law: 𝑯. 𝒅𝒍 = I net and in the case of a simple closed magnetic pathofa 

ferromagneticmaterialitsimplifiestoHl=Ni or H = Ni/l 
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Magneticfluxdensity: 
 

B = μH 
 

Magneticfieldintensity: H = Ni/l 
 

Totalmagneticfluxintensity: Ø = BA = μHA = μ Ni A / l 
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Reluctanceofthemagneticcircuit: R = mmf/Flux = Ni/ Ø = l/μA 

 
 
 

Faradays law of electromagnetic Induction: 

 

 
Selfinducede.m.fofacoilofNturnsisgivenby: eind =−𝑵dØ/dt = −L dI/dt whereListhe 

inductanceofthe coilofNturnswithradiusr andgivenby L = (μ N2 πr2 / l) i 

EquivalentReluctanceofaseriesMagneticcircuit: Reqseries = R1 + R2 + R3 + …. 

EquivalentReluctanceofaParallelMagneticcircuit:  1/Reqparallel = 1/R1 + 1/R2 + 1/R3 + .. 

Coefficientofcouplingk Isgiven bythe relation:  M = k√L1 L2 

 

 
Illustrative examples: 

 
Example 1: A toroidal core of radius 6 cms is having 1000 turns on it. The radius of cross section of the core 1cm.Find 

the current required to establish a total magnetic flux of 0.4mWb.When 

(a) The core isnonmagnetic 

(b) The core is made of iron having a relative permeability of 4000 

 
Solution: 

 
This problem can be solved by the direct application of the following formulae we know in magnetic circuits: 

B = Φ/A = µH and H = Ni/l 

Where 
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B = magnetic flux density (Wb/mtr2 ) Φ = Total magnetic flux 

(Wb)) 

A = Cross sectional area of the core(mtr2) µ = µrµ0 = Permeability 

(Henrys/mtr) µr = Relative permeability of the material ( Dimensionless) 
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T 

 

µ0 = free space permeability = 4π x 10-7 Henrys/mtr 

H = Magenetic field intensity AT/mtr N = Number of turns ofthe coil 
 

i =Currentinthecoil (Amps) l = Lengthofthecoil 

(mtrs) 

from the above relations we can get i as 

 
i = H l/N = (1/ µ )(Φ/A ) l / N = (1/ µ )(Φ/ N) l / A = (1/ µ )(Φ/ N) * 2πr   /π r 2  ] =

C 
[ 2r Φ /

T
 

µ N rC 2 ] 
 

Where rT is the radius of the toroid and rC is the radius of cross section of the coil 

Now we can calculate the currents in the two cases by substituting the respective values. (a) Here µ = µ0.

 Therefore i = (2x6x10- 2x4x10- 4)/ (4πx10-7x1000x10-4) = 380Amps 

(b) Here µ = µrµ0. Therefore i = ( 2 x 6 x 10-2 x 4 x 10-4 )/ (4000 x4π x 10-7 x 1000 x 10-4) = 0.095 Amps 

Ex.2: (a) Draw the electrical equivalent circuit of the magnetic circuit shown in the figure below. The area of  the 

core is 2x2 cm2 .The length of the air gap is 1cm andlengths of the other limbs are shown in the figure. The 

relative permeability of the core is 4000. 

(b) Find the value of the current ‘i’ in the above example which produces a flux density of 1.2 Tesla in the air gap . 

The number f turns of the coil are 5000. 
 

Solution: (a) 

 
To draw the equivalent circuit we have to find the Reluctances of the various flux paths independently. 

Thereluctanceofthepathabcd isgivenby: R1 = length of the path abcd /µrµ0A 

= (32x10-2)/(4πx10-7 x4000x4x10-4) =1.59 x 105AT/Wb 
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The reluctance of the path afed is equal to the reluctance of the path abcd since it has the same length, same 

permeability and same cross sectional area. Thus R1 = R2 

Similarly the reluctance of the path ag (R3) is equal to that of the path hd (R4) and can be calculated as:

 R3 = R4 = (6.5 x 10-2) / (4π x 10-7 x 4000 x 4 x 10-4) = 0.32 x 105 

AT/Wb 
 

The reluctance of the air gap path gh RG can be calculated as : RG = length of the air gap path 

gh/µ0A 

 
(Hereitistobe noted thatµ istobetakenas µ0onlyand µrshouldnot beincluded) RG = (1 x 10-2) / 

(4π x 10-7 x 4 x 10-4  ) = 198.94 x 105 AT/Wb 

The equivalent electrical circuit is shown in the figure below with the values of the reluctances as given below 

the circuit diagram. 
 

R1 = R2 = 1.59x105 AT/Wb R3 = R4 = 0.32x105 AT/Wb RG = 198.94x105 

AT/Wb 
 

Solution: (b) Thisproblemissolvedinthefollowingsteps: 

 
1. First the flux through the air gap ΦG is found out. The flux in the air gap ΦGis given by the 

product of the Flux density in the air gap B and the cross sectional area of the core in that region A . Hence 

ΦG = B.A = 1.2 x 4 x 10-4 = 0.00048 Wb 

Itistobenotedherethat thesame fluxwouldbepassingthroughthereluctances R3,RG & 

R4 

2. Next,the Flux in the path afed Φ2 is to be found out . This can be found out by noticing that the mmf 

across the reluctance R2 is same as the mmf across the sum of the reluctances R3,RG, and R4 coming in 

parallel with R4 . Hence by equating them we get 
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ΦG ( R3 + RG + R4 ) = Φ2 R2 fromwhichweget Φ2 = ΦG (R3 + RG + R4 ) / R2 

 

Hence Φ2 = [0.00048 x ( 0.32 + 198.94 + 0.32)x105 ] / 1.59x105 = 0.06025 Wb 

 
1. Next , the total flux Φ flowing through the reluctance of the path abcd R 1 produced by the 

winding is to be found out.This is the sum of the air gap flux ΦG and the flux in theouterlimb of the core 

Φ2 : i.e Φ = ΦG + Φ2 = (0.00048 + 0.06025) = 0.0607 Wb 

2. Next , The total mmf F given by F = Ni is to be found out . This is also equal to the sum of the mmfs 

across the reluctances R1 and R2 [or (R3 + RG + R4 )] = Φ R1 + Φ2 R2 from whichwe can get ‘i’ as : ‘i’ = 

(Φ R1 +Φ2 R2 ) / N = [0.0607x1.59x105 + 0.06025x1.59x105]/5000 = 3.847 Amps 

is = 3.847 Amps 
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UNIT-IV TRANSMISSION LINES-I 
 

 Types of transmission lines 

 Transmission line Parameters- Primary & Secondary Constants 

 Transmission Line Equations 

 Expressions for Characteristics Impedance 

 Propagation Constant 

 Phase and Group Velocities 

 Infinite Line Concepts 

 Lossless transmission line 

 Distortion 

 Condition for Distortionlessness transmission 

 Minimum Attenuation 

 Illustrative Problems. 
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 SC and OC Lines 

 Input Impedance Relations 

 Reflection Coefficient 

 VSWR 

 λ/4, λ 2, λ /8 Lines - Impedance Transformations 

 Smith Chart - Configuration and Applications, 

 Single Stub Matching 

 Illustrative Problems. 
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 

 
 

Transmission Lines – Smith Chart & 
Impedance Matching (Intensive 

Reading) 
 
 

1 The Smith Chart 
Transmission line calculations − such as the determination of input impedance using equation  

(4.30) and the reflection coefficient or load impedance from equation (4.32) − often involves 

tedious manipulation of complex numbers. This tedium can be alleviated using a graphical  

method of solution. The best known and most widely used graphical chart is the Smith chart. 

The Smith chart is a circular plot with a lot of interlaced circles on it. When used correctly, 

impedance matching can be performed without any computation. The only effort required is 

the reading and following of values along the circles. 

 
 

The Smith chart is a polar plot of the complex reflection coefficient, or equivalently, a 

graphical plot of normalized resistance and reactance functions in the reflection-coefficient 

plane. To understand how the Smith chart for a lossless transmission line is constructed, 

examine the voltage reflection coefficient of the load impedance defined by 

  
Vrefl 

 
ZL  Z0 

   j , (1) 
L 

Vinc ZL  Z0 
re im

 

where re and im are the real and imaginary parts of the complex reflection coefficient L . 

The characteristic impedance Z0 is often a constant and a real industry normalized value, such 

as 50 , 75 , 100 , and 600 . We can then define the normalised load impedance by 

zL  ZL / Z0  (R  jX ) / Z0  r  jx . (2) 

With this simplification, we can rewrite the reflection coefficient formula in (1) as 

      j  
(ZL  Z0 ) / Z0   

 
zL 1 

. (3) 
  

L re im (ZL    Z0 ) / Z0 zL  1 

 
The inverse relation of (3) is 

 
 
 
 

or 

 
z  

1  L 



L 1 






(4) 

(1  re )  jim 
r j x . (5) 

 

(1  re )  jim 

Multiplying both the numerator and the denominator of (5) by the complex conjugate of the 

denominator and separating the real and imaginary parts, we obtain 

1  L e j


jL 
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re im 

re im 

re im 

    2 

  

 
 
 
 

1   2   2 
 

 

 
and 

 
 

r 

(1   )2   2 

(6) 

 
 

2 2 

im 

x     

(1   )2   2 

. (7) 

 

Equation (6) can be rearranged 

as 




r 2  1 2

 

 re  im  

    
 

 
 
 
 
 

 
 

 1 r  1  r 

. (8) 
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This equation is a relationship in the form of a parametric equation (x  a) 2  ( y  b) 2  R 2 

in the complex plane ( ,  ) of a circle centred at the coordinates 
 r  

and having a 
 
 

 
 
 

radius of 1 

re im  
r  1 

,0 

. Different values of r yield circles of different radii withcentres at different 

 
 

r  1 

positions on the re -axis. The following properties of the r-circles are noted: 

 
 The centres of all r-circles lie on the re-axis. 

 The circle where there is no resistance (r = 0) is the largest. It is centred at the 
origin and has a radius of 1. 

 The r-circles become progressively smaller as r increases from 0 to , ending at 
the (re  1, im  0) point for an open circuit. 

 All the r-circles pass through the point (re  1, im  0) . 

 
See Figure 1 for further details. 

 
 

 

Figure 1: The r-circles in the complex plane (re , im ) . 

 
Similarly, (7) can be rearranged as  

 12  1 2
 

(re  1)2   im        . (9) 

 x   x 

Again, (9) is a parametric equation of the type (x  a) 2  ( y  b) 2  R 2 in the complex plane 

r  0(short) 

im 

r  1 

0 0.5 1 
re 

r  
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 

 

 1  1 
(   , ) of a circle centred at the coordinates   1, and having a radius of   . Different 

r i   x x 

 



values of x yield circles of different radii with centres at different positions on the re  1 

line. The following properties of the x-circles are noted: 

 The centres of all x-circles lie on the re  1 line; those for x  0 (inductive 

reactance) lie above the re -axis, and those for x  0 lie below the re -axis. 

 The x = 0 circle becomes the re-axis. 

 The x-circles become progressively smaller as x increases from 0 to , ending at the 

(re  1, im  0) point for an open circuit. 

 
 All the x-circles pass through the point (re  1, im  0) . 

 
See Figure 2 for further details. 
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To complete the Smith chart, the two circles' families are superimposed. The Smith chart 

therefore becomes a chart of r- and x-circles in the (re , im ) -plane for   1 . The 

intersection of an r-circle and an x-circle defines a point which represents a normalized load 

impedanc 

e 

zL  r  j x . The actual load impedance is ZL  Z0 zL  Z0 (r  j x) . As an 

 

illustration, the impedance ZL  85  j30 in a Z0  50  -system is represented by the pointP in 

Figure 3. Here zL  1.7  j 0.6 at the intersection of the r  1.7 and the x  0.6 circles. Values 

for re and im may then be obtained from the projections onto the horizontal and 

vertical axes (see Figure 4). These are approximately given by re  0.3 and im  0.16 . 

Point Psc at (re  1, im  0) corresponds to r  0 an 

d 

x  0 and therefore represents a 

 

short- 

circuit. 

Poc  at (re  1, im  0) corresponds to an infinite impedance therefore 

 

represents an open circuit. 

im 

re 

Figure 2: The x-circles in the complex plane (re , im ) . 
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Figure 3: Smith chart with rectangular coordinates. 

 
Figure 4: Direct extraction of the reflection coefficient   re  jim along the horizontal 

and vertical axes. 

 
 

Instead of having a Smith chart marked with re and im marked in rectangular coordinates, 

the same chart can be marked in polar coordinates, so that every point in the -plane is 

specified by a magnitude  and  a phase angle  . This is illustrated in Figure 5, where 

several  -circles are shown in dashed lines and some  -angles are marked around the 
 

  1 circle. The  -circles are normally not shown on commercially available Smith charts, 

but once the point representing a certain z L  r  jx is located, it is simply a matter of 

im 

Constant 

Resistance r 

Constant 

Reactance x 

re 
0 1 

im 
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drawing a circle centred at the origin through the point. The ratio of the distance to the point 

and the radius to the edge of the chart is equal to the magnitude of  of the load reflection 

coefficient, and the angle that a line to that point makes with the real axis represents  . If, 

for 
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example the point 
 

 Z2 = 75  j100 

Z6 = 0 (a short circuit) 

Z3 = j200 
Z7 = 50 

Z4 = 150 
Z8 = 184  j900 


Z1 = 100 + j50 
Z5 =  (an open 

circuit) 

The normalized impedances shown below are plotted in Figure 6. 
z1 = 2 + j z2 = 1.5  j2 z3 = j4 z4 = 3 

z5 =  z6 = 0 z7 = 1 z8 = 3.68  j18 

 
It is also possible to directly extract the reflection coefficient  on the Smith chart of Figure 6. 

Once the impedance point is plotted (the intersection point of a constant resistance circle and 

 
z L  1.7  j0.6 is marked on the Smith chart at point P, we find that 
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L  1/ 3 and   28 . 

 

Each  -circle intersects the real axis at two points. In Figure 5 we designate the point on the 
 

positive real axis as PM and on the negative real axis as Pm. Since x = 0 along the real axis, both 

these points represent situations of a purely resistive load, Z L  RL . Obviously, RL  Z 0 at PM 

where r  1 , and RL  Z 0 at Pm where r  1 . Since S  RL / Z 0 for RL  Z 0 , the value of the r- 

circle passing through the point PM is numerically equal to the standing wave ratio. For the 
 
 

example where z L  1.7  j0.6 , we find that r  2 at PM , so that S = r = 2. 
 

Figure 5: Smith chart in polar coordinates. 
 
 
 

Example 1: 
 

Consider a characteristic impedance of 50  with the following impedances: 

 
 

of a constant reactance circle), simply read the rectangular coordinates projection on the 

horizontal and vertical axis. This will give re , the real part of the reflection coefficient, and 

im , the imaginary part of the reflection coefficient. Alternatively, the reflection coefficient 

may be obtained in polar form by using the scales provided on the commercial Smith chart. 
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1 = 0.4 + 0.2 j 2 = 0.51  0.4 j 3 = 0.875 + 0.48j 4 = 0.5 

= 0.45  27 = 0.65 38 = 0.998 29 = 0.5 0

5 = 1 6 = 1 7 = 0 8 = 0.96  0.1 j 
= 1 0 = 1 180 = 0 = 0.97 6

 

Figure 6: Points plotted on the Smith chart for Example 1. 
 
 

The Smith chart is constructed by considering impedance (resistance and reactance). It can 

be used to analyse these parameters in both the series and parallel worlds. Adding elements 

in a series is straightforward. New elements can be added and their effects determined by 

simply moving along the circle to their respective values. However, summing elements in 

parallel is another matter, where admittances should be added. 

 
 

We know that, by definition, Y = 1/Z and Z = 1/Y. The admittance is expressed in mhos or 1
 

 

or alternatively in Siemens or S. Also, as Z is complex, Y must also be complex. Therefore 
 

Y  G  jB , (10) 

where G is called the conductance and B the susceptance of the element. When working with 
admittance, the  first thing  that we must do is normalize y   =  Y/Y0. This results in        y 
 g  jb  1/ z . So, what happens to the reflection coefficient? We note that 

Z1 

Z3 

Z5 

Z6 

Z8 

Z7 

Z4 Z2 
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 

  
z 1 

 
(z 1)/ z 

 
1  y 

 
 y 1 

. (11)
 

z  1 (z 1) / z 1  y 
 

1 y 



Thus, for a specific normalized impedance, say z1  1.7  j0.6 , we can find the 

corresponding reflection coefficient as 1  0.33  28 . From (11), it then follows that the 

reflection coefficient for a normalized admittance   of 
 

2  1  0.33  (28  180) . 

y2  1.7  j0.6 will be 

 

This also implies that for a specific normalized impedance z, we can find y  1/ 

z 

by rotating 

 

through an angle of 180° around the centre of the Smith chart on a constant radius (see 

Figure 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Results of the 180° rotation 
 

Note that while z and y = 1/z represent the same component, the new point has a different 

position on the Smith chart and a different reflection value. This is due to the fact that the 

plot for z is an impedance plot, but for y it is an admittance plot. When solving problems 

where elements in series and in parallel are mixed together, we can use the same Smith chart 

by simply performing rotations where conversions from z to y or y to z are required. 
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2 Smith Charts and transmission line circuits 
So far we have based the construction of the Smith chart on the definition of the voltage 

reflection coefficient at the load. The question is: what happens when we connect the load to 

a length of transmission line as in Figure 8. 

 
Figure 8: Finite transmission line terminated with load impedance ZL. 
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L 

L 

i L L 

 

 

On a lossless transmission line with k   , the input impedance at a distance z' from the 

load is given by 

V (z ') 1   e j 2z ' 

 
  

Zi   Z0 

I (z ') 1  

L 

The normalised impedance is then 

e j2z ' 
. (12) 

 

 
zi 

Zi (z ') 1   e j 2z ' 1  i 

 
 

  . (13) 
  e j 2z '      1  

Z 0 1 L 
i 

Consequently, the reflection coefficient seen looking into the lossless transmission line of 
length  z   is given by 

 

      e j 2 z       e j  e j 2 z  (14) 

 

This implies that as we move along the transmission line towards the generator, the 
magnitude of the reflection coefficient does not change; the angle only changes from a value 

of   at the load to a value of  (  2 z )  at a distance  z  from the load. On the Smith chart, 

we are therefore rotating on a constant  circle. One full rotation around the Smith chart 
 

requires   that   2 z   2 ,   so   that 

transmission line. 

z    /    / 2    where  is the wavelength on the 

 

 
Two additional scales in 

z  /   are usually provided along the perimeter of the      1 circle 

 

for  easy  reading  of  the  phase  change  2  z  due  to  a  change  in  line length  z  . The outerscale 

is marked in “wavelengths towards generator” in the clockwise direction (increasing   z  ) and 

“wavelengths towards load” in the counter-clockwise direction (decreasing  z  ). Figure 9 

shows a typical commercially available Smith chart. 
 
 

Each  -circle intersects the real axis at two points. Refer to Figure 5. We designate the point 
 

on the positive real axis as PM and on the negative real axis as Pm. Since x = 0 along the real 
axis, both these   points   represent   situations   of   a   purely   resistive   input   impedance, 

Zi  Ri  j0 . Obviously, Ri  Z0 at PM where r  1 , and Ri  Z0 at Pm where r  1 . Atthe 

point PM we find that      Zi  Ri  S Z0 , while        Zi  Ri Z0 / S       at Pm. The point PM on an 

 
impedance chart corresponds to the positions of a voltage maximum (and current minimum) 
on the transmission line, while Pm represents a voltage minimum (and current maximum). 
Given an arbitrary normalised impedance z, the value of the r-circle passing through the point 

PM is numerically equal to the standing wave ratio. For the example, if z  1.7  j0.6 , wefind 



that r  2 at PM , so that S = r = 2 . 
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Figure 9: The Smith chart. 
 

Example 2: 
 

Use the Smith chart to find the impedance of a short-circuited section of a lossless 50  co- 

axial transmission line that is 100 mm long. The transmission line has a dielectric of relative 
 

permittivity  r  9 between the inner and outer conductor, and the frequency under 

consideration is 100 MHz. 

 
For the transmission line, we find 

that 

   

6.2875 

rad/m    and 
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0 0  r 
  2 /   0.9993  1   m.   The transmission line of length z   100    mm is therefore 

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE 

z  /   0.1 wavelengths long. 
 

 Since z L  0 , enter the Smith chart at a point Psc. 

 Move along the perimeter of the chart (   1 ) by 0.1 “wavelengths 

towards the generator” in a clockwise direction to point P1. 

 At P1 , read r  0 and x  0.725 , or zi  j0.725 . Then Z i  j0.725  50  j36.3  . 
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Figure 10: Smith chart calculations for Example 2 and Example 3. 
 
 

Example 3: A lossless transmission line of length 0.434 and characteristic impedance 100  

is  terminated  in  an  impedance  260  +  j180  .  Find  the  voltage  reflection  coefficient,  the 

standing-wave ratio, the input impedance, and the location of a voltage maximum on the 

line. 

 
 

Given  z   0.434  ,  Z 0   100  and  Z L   260   j180  . Then 

 Enter the Smith chart at z L  Z L / Z 0  2.6  j1.8 shown as point P2 in Figure 10. 
 

 With the centre at the origin, draw a circle of radius OP2  L  0.6 . 

 Draw the straight line OP2     
and extend it to P2  on  the  periphery.  Read  0.220  on 

“wavelengths towards generator” scale. The phase angle  of the load reflection may 

either be read directly from the Smith chart as 21 on the "Angle of Reflection 

Coefficient" scale. Therefore L  0.6 e j21/180  0.6 e j0.12 . 

P1 P ' 3 

P3 

P2' 

P2 

Psc 

O PM Poc 



 The   0.6 at r  S  4 . Therefore the circle intersects the positive real axis OPsc 
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voltage standing-wave ratio is 4. 
 

 The find the input impedance, move  P2  at 0.220 by a total of 0.434 “wavelengths 

toward the generator” first to 0.500 (same as 0.000) and then further to 0.434 

(0.5000.220)=0.154 to  P3 . 
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L 0 

L 0 

 

 

 Join O and  P3  by a straight line which intersects the     0.6  circle at  P3 . Here  r  0.69 

and x  1.2 , or zi  0.69  j1.2 . Then Z i  (0.69  j1.2) 100  69  j120  . 
 

 In going from P2 to P3 , the   0.6 circle intersects the positive real axis at PM where 

there is a voltage maximum. Thus the voltage maximum appears at 0.2500.220=0.030 

wavelengths from the load. 

 
 

3 Transmission line impedance matching. 
Transmission lines are often used for the transmission of power and information. For RF  

power transmission, it is highly desirable that as much power as possible is transmitted from 

the generator to the load and that as little power as possible is lost on the line itself. This will  

require that the load be matched to the characteristic impedance of the line, so that the 

standing wave ratio on the line is as close to unity as possible. For information transmission it 

is essential that the lines be matched, because mismatched loads and junctions will result in 

echoes that distort the information-carrying signal. 

 

Impedance matching by quarter-wave transformer 
 

For a lossless transmission line of length l, characteristic impedance of 

terminated in a load impedance Z L , the input impedance is given by 

Z  R Z  jR tan l 

R0 L 

 
Z0  R0 and 

i 0  jZ tanl (15) 

 R 
ZL  jR0 tan(2 l / ) 

.
 

R0  jZ L tan(2 l / ) 

 

If the transmission line has a length of l   / 4 , this reduces to 

Z  R 
Z  jR tan( / 2) 

R0 L 

i 0  jZ tan( / 2) 

 R 
 ZL / tan( / 2)  jR0  

0 
R0 / tan( / 2)  jZL 

 R
 0  jR0  

0 0  jZ 

 
(R0 )2 

. 
ZL 

 
 
 
 
 
 
 
 

 
(16) 

0 

L 



This presents us with a simple way of matching a resistive load Z L  RL to a real-valued 
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Ri RL 

0 

input impedance 

of 
Zi  Ri : insert a quarter-wave transformer with characteristic impedance 

 

R0 . From (16), we have Ri  (R0 )2 / RL , or  
R  

. (17) 

 

Note that the length of the transmission line has to be chosen to be equal to a quarter of a 
transmission line wavelength at the frequency where matching is desired. This matching 
method is therefore frequency sensitive, since the transmission line section will no longer be 
a quarter of a wavelength long at other frequencies. Also note that since the load is usually  

matched to a purely real impedance Zi  Ri , this method of impedance matching can only be 

applied to resistive loads Z L  RL , and is not useful for matching complex load impedances 
to a lossless (or low-loss) transmission line. 

 

Example 4 
 

A signal generator has an internal impedance of 50 . It needs to feed equal power 

through alossless 50  transmission line with a phase velocity of 0.5c to two separate 
resistive loads of 
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Ri1 RL1 

Ri 2 RL2 

0 0  r 

 

 

64  and 25  at a frequency of 10 MHz. Quarter-wave transformers are used to match the 
loads to the 50  line, as shown in Figure 11. 

(a) Determine the required characteristic impedances and physical lengths of the 
quarter- wavelength lines. 
(b) Find the standing-wave ratios on the matching line sections. 

Figure 11: Impedance matching by quarter-wave transformers (Example 4). 
 
 

(a) To feed equal power to the two loads, the input resistance at the junction with the 
main line looking toward each load must be 

Ri1  2R0  100  an 

d 
Therefore 

 

R01   80 



R02   50 

Ri 2  2R0  100 




Assume that the matching sections use the same dielectric as the main line. We know that 
 

u p   1   1  
c 

. 
2 

We can therefore deduce that it uses a dielectric with a relative permittivity of  r  4 . 

  
u p 

 
2 

 15 m. 

f k 
 

The length of each transmission line section is therefore l   / 4  3.75 m . 

 
 

(b) Under matched conditions, there are no standing waves on the main transmission line, i.e. 


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S = 1. The standing wave ratios on the two matching line sections are as follows: 

 DEPT.OF ECE 

  
RL1   R01   

 
64  80 

 0.11 
L1 R     R  64  80 

L1 01 

1  L1         1  0.11 
S    1.25 

1 1 0.11 

 
Matching section No. 2: 
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  
RL2   R02   

 
25  50 

 0.33 
L2 R  R  25  50 

L2 02 

1  L2 1  0.33 
S      1.99 

 

2 1 0.33 
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1.a
) 

What is basic cutset matrix? Explain with an example.  

b) Draw the T equivalent model for magnetically coupled circuits 
and explain. 

[8+7] 

2.a
) 

b) 

Explain the concept of impedance transformation with an 
example. 
In the circuit shown in figure 1, L1 = L2 = 3 H and M = 0.6 H. 
Compute 

 
, if 

  
[8+7] 

 
 
 
 
 
 
 
 

Figure: 1 

3.a) Obtain the expression for resonant frequency of RLC series circuit. 
b) In the circuit shown in figure 2, find current ‘i’ at t = 10 sec. [7+8] 

R16 
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Figure: 2 
 

4.a) What is damping factor? Explain the step response of second order 
system with underdamped case. 

b) Determine quality factor and bandwidth for the parallel RLC resonant 
circuit. Given 

R = 100 Ω, L = 0.2 mH and C = 500 µF. [7+8] 
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5.a) Define average value of a triangular periodic waveform. Derive the expression for it 
for sinusoidal waveform. 

b) Using Laplace transform techniques, derive the expression for transient current in 
series RL circuit excited by impulse input. [8+7] 

 
6. Obtain the transient response of current for the following network shown below figure 3. 

[15] 
 

 

7.a) What is characteristic impedance? Explain its importance in detail . 
b) Derive g parameters for the following two port network shown in figure 4. [7+8] 

 

Figure: 4 
 

8.a) Give the classification of attenuators. 
b) Discuss in detail about the design of constant HP filter. [6+9] 
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