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1.PEO’S,PO’S,PSO’S

PROGRAMEDUCATIONALOBJECTIVES:

PEO1: To excel in different fields of electronics and communication as well as in
multidisciplinary areas. This can lead to a new era in developing a good electronic product.
PEO2: To increase the ability and confidence among the students to solve any problem in their
profession by applying mathematical, scientific and engineering methods in a better and
efficient way.

PEO3: To provide a good academic environment to the students which can lead to excellence,
and stress upon the importance of teamwork and good leadership qualities, written ethical
codes and guide lines for lifelong learning needed for a successful professional career.

PEO4: To provide student with a solid foundation to students in all areas like mathematics,
science and engineering fundamentals required to solve engineering problems, and also to
pursue higher studies.

PEOS5: To expose the student to the state of art technology so that the student would be in a
position to take up any assignment after his graduation.

PROGRAMOUTCOMES:-
Engineeringknowledge:Applytheknowledgeofmathematics,science,engineeringfundamentals,and
anengineering specializationto thesolutionofcomplexengineering problems.
Problemanalysis:Identify,formulate,reviewresearchliterature,andanalyzecomplexengineeringproblems
reaching substantiated conclusions using first principles of mathematics, natural sciences,and
engineeringsciences.
Design/developmentofsolutions: Designsolutionsforcomplexengineeringproblemsanddesignsystem
components or processes that meet the specified needs with appropriate consideration
forthepublichealthand safety,and thecultural,societal,and environmental considerations.
Conduct investigations of complex problems: Use research-based knowledge and
researchmethodsincludingdesignofexperiments,analysisandinterpretationofdata,andsynthesisoftheinformati
ontoprovidevalidconclusions.
Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modernengineeringandITtoolsincludingpredictionandmodelingtocomplexengineeringactivitieswithanunders
tanding ofthelimitations.
Theengineerandsociety:Applyreasoninginformedbythecontextualknowledgetoassesssocietal,health, safety,
legal and cultural issues and the consequent responsibilities relevant to theprofessional engineeringpractice.
Environment and sustainability: Understand the impact of the professional engineering
solutionsinsocietalandenvironmentalcontexts,anddemonstratetheknowledgeof,andneedforsustainabledevelo
pment.
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
oftheengineeringpractice.
Individualandteam work:Functioneffectivelyasanindividual,andasamemberorleaderindiverseteams,andin
multidisciplinarysettings.
Communication: Communicate effectively on complex engineering activities with the
engineeringcommunityandwithsocietyatlarge,suchas,beingableto
comprehendandwriteeffectivereportsanddesigndocumentation,makeeffectivepresentations,andgiveandrecei
veclearinstructions.
Project management and finance: Demonstrate knowledge and understanding of the
engineeringandmanagementprinciplesandapplytheseto
one’sownwork,asamemberandleaderinateam,tomanageprojectsandin multidisciplinaryenvironments.
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Life-longlearning:Recognizetheneedfor,andhavethepreparationandabilityto engageinindependentand life-
long learning inthebroadestcontextoftechnological change.

PROGRAMSPECIFIC OUTCOMES:

PSOL1: The ability to absorb and apply fundamental knowledge of core  Electronics
and Communication Engineering subjects in the analysis, design, and development of various
types of integrated electronic systems as well as to interpret and synthesize the experimental
data leading to valid conclusions.

PSO2: Competence in using electronic modern IT tools (both software and hardware)
for the design and analysis of complex electronic systems in furtherance to research activities.

PSO3: Excellent adaptability to changing work environment, good interpersonal skills
as a leader in a team in appreciation of professional ethics and societal responsibilities.
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EC302PC: NETWORK ANALYSIS AND
TRANSMISSION LINES

B.Tech. Il Year | Sem. L T P C

Pre-Requisites: Nil

Course Objectives:

To understand the basic concepts on RLC circuits.

To know the behavior of the steady states and transients states in RLC circuits.

To understand the two port network parameters.

To study the propagation, reflection and transmission of plane waves in bounded andunbounded
media.

Course Outcomes: Upon successful completion of the course, students will be able to:
e  Gain the knowledge on basic RLC circuits behavior.
e Analyze the Steady state and transient analysis of RLC Circuits.
o Know the characteristics of two port network parameters.
e Analyze the transmission line parameters and configurations.

UNIT -1

Network Topology, Basic cutset and tie set matrices for planar networks, Magnetic
Circuits, Self and Mutual inductances, dot convention, impedance, reactance concept,
Impedance transformation and coupled circuits, co-efficient of coupling, equivalent T for
Magnetically coupled circuits, Ideal Transformer.

UNIT - 11

Transient and Steady state analysis of RC, RL and RLC Circuits, Sinusoidal, Step and Square
responses. RC Circuits as integrator and differentiators. 2nd order series and parallel RLC
Circuits, Rootlocus, damping factor, over damped, under damped, critically damped cases,
quality factor and bandwidth for series and parallel resonance, resonance curves.

UNIT - III

Two port network parameters, Z, Y, ABCD, h and g parameters, Characteristic impedance,
Image transfer constant, image and iterative impedance, network function, driving point
and transfer functions

- using transformed (S) variables, Poles and Zeros. Standard T, &, L Sections, Characteristic
impedance, image transfer constants, Design of Attenuators, impedance matching
network.

UNIT -1V

Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary &
Secondary Constants, Equivalent Circuit, Characteristic Impedance, Propagation Constant,
Phase and Group Velocities, Infinite Line Concepts, Lossless / Low Loss Characterization,
Types of Distortion, Condition for Distortion less line, Minimum Attenuation, Loading -
Types of Loading.
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UNIT -V

Transmission Lines - II: Input Impedance Relations, SC and OC Lines, Reflection
Coefficient, VSWR. 1/4, 1/2, 1/8 Lines - Impedance Transformations, Smith Chart -
Configuration and Applications, Single Stub Matching.

=

PODE

TEXT BOOKS:

Network Analysis - Van Valkenburg, 314 Ed., Pearson, 2016.
Networks, Lines and Fields - ]D Ryder, PHI, 2nd Edition, 1999.

REFERENCE BOOKS:

Electric Circuits - J. Edminister and M. Nahvi - Schaum’s Qutlines, Mc Graw Hills Education,1999.
Engineering Circuit Analysis - William Hayt and Jack E Kemmerly, MGH, 8t Edition, 1993.
Electromagnetics with Applications - JD. Kraus, 5% Ed., TMH

Transmission Lines and Networks - Umesh Sinha, Satya Prakashan, 2001, (Tech. India
Publications), New Delhi.
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3.ClassTimeTable&IndividualTimeTable

Class: 11/1V B.Tech — | Semester

LECTURE HALL - B1 G04

Branch: ECE-A

ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Day/ 9:15am | 10:15am | 11:15am | 12:15 pm | 1:15pm 2:00 pm 3:00 pm
Time to to to to to to to
10:15am | 11:15am | 12:35pm | 1:15pm | 2:00 pm | 3:00 pm 4:00 pm
Monday EDC DSD NATL PTSP DSD LAB/EDC LAB
Tuesday NATL PTSP DSD SS L EDC LIBRARY
Wednesday DSD PTSP EDC NATL ﬁ SS SEMINAR
Thursday SS EDC | EDC LAB/DSD LAB C PTSP TUTORIAL
Friday NATL SS PTSP DSD H Col SPORTS
Saturday SS NATL DSD EDC BS LAB

Class: 11/1V B.Tech — | Semester
LECTURE HALL -B1 G 07

Branch: ECE-B

ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Day/ 9:15am | 10:15am | 11:15am | 12:15 pm | 1:15pm 2:00 pm 3:00 pm
Time to to to to to to to
10:15am | 11:15am | 12:15pm | 1:15pm | 2:00 pm | 3:00 pm 4:00 pm
Monday SS NATL EDC DSD PTSP SPORTS
Tuesday DSD EDC DSD LAB/EDC LAB L SS LIBRARY
Wednesday PTSP SS DSD EDC U NATL SEMINAR
Thursday NATL DSD SS PTSP IC\I; BS LAB
Friday DSD PTSP NATL b3 H EDC TUTORIAL
Saturday EDC NATL 2SR COl EDC LAB/DSD LAB




NETWORK ANALYSIS AND TRANSMISSION LINES

Individual TimeTable:

9.15- 10.15- 11.15- 12.15-1.15 [1.15-2.00 [2.00- 3.00-
10.15 11.15 12.15 3.00 4.00
MON NATL(B) NATL(A) (B) LUNC
H
TUES NATL(A)
WED NATL(A) NATL(B)
THUR |NATL(B)
FRI NATL(A) NATL(B)
SAT NATL(B) NATL(A)
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4.StudentsRollList ECE-A

SNo H.T.NO NAME OF THE STUDENT SNo H.T.NO NAME OF THE STUDENT
1 21S11A0401 | ABHIRAM TALLA 27 21S11A0427 | RAHITH KUMAR KANDLAGUNTA
2 21S11A0402 | AKASH BASHETTY 28 21S11A0428 | RAJESHWAR J
3 21S11A0403 | AKSHAY KUMAR REDDY 29 21S11A0429 | RANI ANANTHA
KUNCHANAGARI
4 21S11A0404 | ANJANEYULU KAMMARI 30 21S11A0430 | REKHA MANGA
5 21S11A0405 | ANKIT RAJ 31 21S11A0431 | REVATHI MEESALA
6 21S11A0406 | ASAD PASHA SHAIK 32 21S11A0432 | RISHAB SAKALE
7 21S11A0407 | ASHWINI CHETHIPATTI 33 21S11A0433 | SAlI KRISHNA REDDY B
8 21S11A0408 | BHARATH K 34 21S11A0434 | SAl RATNA VEMULA
9 21S11A0409 | BHEESHMA SANDI 35 21S11A0435 | SAI RITHIK SIBYALA
10 | 21S11A0410 | CHAITHANYA ANUMANCHINENI 36 21S11A0436 | SAlI SRIYA PETTEM
11 | 21S11A0411 | CHANTI BODA 37 21S11A0437 | SAI VENKATA KRISHNA MRUDUL
RAYANAPATI
12 | 21S11A0412 | DARSHAN KUMBAM 38 21S11A0438 | SHANKHABRATA ROY
13 | 21S11A0413 | GANESH VANKUDOTH 39 21S11A0439 | SHARATH CHANDRA REDDY YALLA
14 | 21S11A0414 | GEETA RAGHUJI REDDY 40 21S11A0440 | SHIVA SAI REDDY SHAGAM
15 | 21S11A0415 | HARIKA SATTI 41 21S11A0441 | SHIVA SHANKAR BADDULA
16 | 21S11A0416 | HASINI BASHETTY 42 21S11A0442 | SREENIPA NANDELLI
17 | 21S11A0417 | JAGADEESH SANGHISHETTY 43 21S11A0443 | SRIRAM REDDY ANANTHA
18 | 21S11A0418 | JAYA PRAKASH REDDY PANYALA 44 21S11A0444 | SWATHI KASHAPAKA
19 | 21S11A0419 | JEEVANA GATLA 45 21S11A0445 | SYED FAHAD
20 | 21S11A0420 | KALYANI JULKAPELLI 46 21S11A0446 | TUSHWANTH KARUTURI
21 | 21S11A0421 | MANISHA MULA 47 21S11A0447 | VAISHNAVI DEVA
22 | 21S11A0422 | MEHAR NIKHIL MANNE 48 21S11A0448 | VENKAT RAO THOKALA
23 | 21S11A0423 | NANDINI MANNE 49 21S11A0449 | VENKATA NAGA VARSHITHA
POLISETTY
24 21S11A0424 | NITISH REDDY KOTHAKAPU 50 21S11A0450 | VIJAY KUMAR KASAM
25 | 21S11A0425 | PAVAN KUMAR MALLAPPAGARI 51 21S11A0451 | VINAY SANGEM
26 | 21S11A0426 | PRAKASHAM VADAPARTHI 52 21S11A0452 | VISHNU VANGARI
SNo| HT.NO [ NAME OF THE STUDENT SNo| H.TNO [ NAME OF THE STUDENT
1 | 21S11A0453 | AJAY KUMAR REDDY VITTA 27 | 21S11A0479 | POONAM SAHU
2 | 21S11A0454 | AKHILA BHUKYA 28 | 21S11A0480 | PRAKASH KATLA
3 | 21S11A0455 | AKSHAY GOUD DURGAM 29 | 21S11A0481 | PREMKANTH KOMMINENI
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Lt S LLAQAS 0 AKSHAN MIRLIDALA 20 el SLLAQAS 2 L RAJENDER NANKLIDOTH
5 21S11A0457 | ANJANEYULU B 31 21S11A0483 | RAKESH KRISHNA JAKKA
6 21S11A0458 | ARJUN VISLAVATH 32 21S11A0484 | ROHITH REDDY PULAKANTI
7 21S11A0459 | BHANU SAI NAGENDER PAPPALA 33 21S11A0485 | SAl KUMAR REDDY MANDAPATI
8 21S11A0460 | BHARGAVI MANDHUGULA 34 21S11A0486 | SAlI PRASAD K
9 21S11A0461 | CHETHAN THEEGALA 35 21S11A0487 | SAl PRASAD REDDY
AKKENAPALLY
10 | 21S11A0462 | DEVI PRIYANKA NARIKALAPA 36 21S11A0488 | SAICHAND KARRA
11 | 21S11A0463 | ESHWAR BOLLAPALLI 37 21S11A0489 | SAINADH TEEGALA
12 | 21S11A0464 | ESHWAR VENKATA SATYA SAl 38 21S11A0490 | SAITEJA KODHATI
VITTANALA
13 | 21S11A0465 | GANGADHAR REDDY CHALLA 39 21S11A0491 | SAKETHBABU VARAGANI
14 | 21S11A0466 | JAlI SINGH ROTHVAN 40 21S11A0492 | SIDDARTHA YADAV THOTLA
15 | 21S11A0467 | JEEVAMRUTHA AKARAPU 41 21S11A0493 | SIVA KIRAN AKSHINTALA
16 | 21S11A0468 | KARTHIK KUMAR C 42 21S11A0494 | SPANDANA SEEDULA
17 | 21S11A0469 | KRISHNA TOLUPUNURI 43 21S11A0495 | SRIRAM SINGARAM
18 | 21S11A0470 | MAHESH NOMULA 44 21S11A0496 | SRIVANI GEDDADA
19 | 21S11A0471 | MANI VEERA NAGENDRA DASARI 45 21S11A0497 | SUDHEER KUMAR TOKALA
20 | 21S11A0472 | MANOJ KUMAR VELISHALA 46 21S11A0498 | TEJA SRI GURRALA
21 | 21S11A0473 | NAGA RAJU RAVULA 47 21S11A0499 | THANU SRI REDDY MALLE
22 | 21S11A0474 | NAGARAJU ARUGONDA 48 21S11A04A0 | VAISHNAVI CHEDDE
23 | 21S11A0475 | NEETHU BOKKA 49 21S11A04A1 | VAMSHI KRISHNA
AMARAGONDA
24 | 21S11A0476 | NIKHITHA GANGALA 50 | 21S11A04A2 | VIGNESH VALAGIRI
25 | 21S11A0477 | PAVAN KUMAR UPUTURI 51 21S11A04A3 | SYED KALEEMULLAH HUSSAIN
26 | 21S11A0478 | PAVAN YALKAPALLY 52 21S11A04A4 | RICHA MIDDE
LESSON PLAN:
=
=
St
©
Q
=] v - BN
2 ) = Tobi Course Ref
@ § g opics Learning eference
3 Outcomes
Know about T1,T2,R1
Review of R, LL,C electricalelements
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Analyse RC, RL, RLC T1,T2,R1
Review of RC, RL, RLC circuits circuits

Understanding T1,T2,R1
Network Topology, Terminology Network
Basic cut set matrix for Define cut set matrix T1,T2,R1
planarnetworks
Basic tie set matrix for Define tie set matrix | T1,T2,R1
planarnetworks

Understanding T1,T2,R1

1. | Magnetic Circuits Magnetic Circuits

Understanding T1,T2,R1
Self and Mutual inductances mutual inductance

Know about T1,T2,R1
Dot convention Dotconvention
Impedance Analyse impedance T1,T2,R1
reactance concept Know aboutreactance | T1,T2,R1
Impedance transformation Understanding T1,T2,R1
andcoupled circuits coupled circuits
Co-efficient of coupling Know about coupling | T1,T2,R1
Equivalent T for Understanding T1,T2,R1
Magneticallycoupled circuits Equivalent T Circuit

Know about T1,T2,R1
Ideal Transformer Ideal

Transformer

I Steady state and transient analysis | Know about T1,T2,R1
" | ofRC Circuits Steadystate and
transient

10
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response
transient analysis of RL and RLC Analyse T1,T2,R1
Circuits transient
analysis
Analyse T1,T2,R1
transient analysis of RLC Circuits transient
analysis
Understanding T1,T2,R1
Circuits with switches switch circuit
5. Step response Analyse step response | T1,T2,R1
2nd order series and parallel RLC | Know about T1,T2,R1
Circuits 2ndorder
Circuits
Understanding T1,T2,R1
Root locus Rootlocus
damping factor, over damped, Analyse T1,T2,R1
underdamped damped
response
6. Under damped, critically Analyse T1,T2,R1
dampedcases, damped
response
Know T1,T2,R1
Resonance curves about
resonance
Quality factor and bandwidth Analyse series T1,T2,R1
forseries resonance
circuit
Quality factor and BW for parallel Analyse T1,T2,R1
resonance parallel
resonance
circuit
Know about T1,T2,R3
Two port network Z parameters Zparameters
Know about T1,T2,R3
Two port network using Y Yparameters
va parameters
Two port network using Know about ABCD T1,T2,R3
ABCDparameters parameter
Know about T1,T2,R3
Two port network using h hparameter
parameters
Know about
Two port network using g gparameter
parameters
I Define T1,T2,R3
8. Characteristic impedance Characteristic
impedance
Define Image T1,T2,R3
Image transfer constant transferconstant
Define Image T1,T2,R3
Image impedance impedance
Define T1,T2,R2
iterative impedance iterative
impedance

11
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Know-about TLF2R2—
network function networkfunction
Driving point transfer Know about T1,T2,R2
functions -using transformed Drivingpoint
(S) variables transfer

functions

12
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Poles and Zeros Define Poles T1,T2,R2
andZeros
Standard T, it Sections lsig?l‘éva?g%ui T1,T2,R2
Sections
Know about T1,T2,R2
10 Standard L Section Standard L Sections
Understanding T1,T2,R2
Characteristic impedance impedance
Understanding T1,T2,R2
image transfer constants imageconstants
Design of Attenuators Synthesis Attenuators | T1,T2,R2
Synthesis T1,T2,R2
impedance matching network impedancematching
11 n/w
Understanding T T1,T2,R2
T and  Conversion, and m Conversion
LC Networks and Filters Synthesis filter T1,T2,R2
Know about T1,T2,R2
constant K HP Filters constantK Filters
Design constant K HP Filters Synthesis HP Filters T1,T2,R2
12 constant K BP Filters Know about T1,T2,R2
constantK Filters
Design constant K BP Filters Synthesis BP Filters T1,T2,R2
Synthesis T1,T2,R2
Composite filter design. compositeFilters
Transmission Lines - 1 T1,T2,R2
Transmission line
Types,
Parameters, Transmission Line
Equations
Transmission Lines - [ Understanding T1,T2,R2
Transmission line
13. Types,
Parameters, Transmission Line
I\ Equations Primary & Secondary
Constants
Primary & Secondary Constants Gathering Knowledge | T1,T2,R2
Primary & Secondary Constants Gathering Knowledge | T1,T2,R2
Understanding of T1,T2,R2
Expressions  for  Characteristic | characteristic
14. Impedance, Propagation Constant, | jjmpedance,
Phase and Group Velocities Propagation

Constant,Phase and
Group

13
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Velocities
Expressions for Characteristic | Compose T1,T2,R2
Impedance, Propagation Constant, th
Phase and Group Velocities. eKnowledge
Expressions for Characteristic Compose T1,T2,R2
Impedance, Propagation th
Constant,Phase and Group eKnowledge
Velocities,
Infinite Line Concepts Losslessness| Compose T1,T2,R2
/Low Loss Characterization th
eKnowledge
Infinite Line Concepts Losslessness| Gathering Knowledge | T1,T2,R2
/Low Loss Characterization
Distortion - Condition  for | Gathering Knowledge | T1,T2,R2
Distortion lessness Minimum
Attenuation, Loading - Types of
Loading.
Distortion - Condition for | Compose T1,T2,R2
Distortion lessness Minimum th
15. Attenuation, Loading - Types of | eKnowledge
Loading.
Transmission Lines - II: T1,T2,R1
Inputlmpedance Relations
K led f| T1,T2,R1
SC and OC Lines, Reflection R E.l 8¢ . ©
16 Coefficient. VSWR Reflection Coefficient,
’ VSWR
SC and OC Lines, Reflection Gathering Knowledge | T1,T2,R1
Coefficient, VSWR
Tutorial / Bridge Class # 9 Understanding T1,T2,R1
UHF Lines as Circuit Elements; A Understanding T1,T2,R1
/4,A /2, /8 Lines
17 UHF Lines as Circuit Elements; A Gathering Knowledge | T1,T2,R1

/4,A /2, A /8 Lines

14
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Impedance Transformations Gathering Knowledge | T1,T2,R1
Significance of Zmin and Zmax Compose th T1T2,R1
eKnowledge
Tutorial / Bridge Class # 10 Gathering Knowledge | T1,T2,R1
Smith Chart - Configuration Understanding T1,T2,R1
andApplications
Smith Chart - Configuration Gathering Knowledge | T1,T2,R1
18 andApplications
Gathering Knowledge | T1,T2,R1

Single Stub Matching,

15
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6.UNIT WISE LECTURE NOTES
a)NotesofUnits

NETWORK ANALYSIS AND TRANSMISSION LINES

II B.Tech I semester(JNTUH-R18)

ELECTRONICS & COMMUNICATION ENGINEERING
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UNIT - I:
Transient Analysis (First and Second Order Circuits):

e Introduction to transient response and steady state response

e Transient response of series -RL, RC RLC Circuits for sinusoidal,square, ramp and
pulse excitations

e Initial Conditions

e Solution using Differential Equations approach and Laplace
Transform method
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Introduction to transient response and steady state response
¢ In this chapter we shall study transient response of the RL, RC series and RLC circuits with sinusoidal,
square, ramp and pulse excitations.
o Transients are present in the circuit, when the circuit is subjected to any changes either by changing source magnitude or
while changing any circuit elements, provided circuit consists of any energy storage elements.

e There are 3 circuit elements(1)Resistor (2)Inductor(3)Capacitor

e Inductor and Capacitor are called storage elements.

e Inductor doesn’t allow sudden change in current and stores the energy in the form of magnetic field.

e (apacitor doesn’t allow sudden change in voltage and stores the energy in the form of electric field.

e  When the circuit is having only resistive elements, no transients present in the circuit since resistor allowssudden
change in current and voltage and it doesn’t store any energy.

o The total response of the circuit=Transient response +Steady state response.

o Transient response changes with time and gets saturated after some time. It is also called as natural
response.

o Steady state response doesn’t change with the time. It is also called forced response.

e The time taken for the circuit to change from one steady state to another steady state is called transient

time.
e Under initial conditions inductor behaves like open circuit i.e. [L.=0

e Under steadv state conditions inductor behaves like short circuit i.e. Vi=0

e Under initial conditions Capacitor behaves like short circuit i.e. Vc=0

e Under_steady state conditions capacitor behaves like open circuit i.e. Ic=0
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t=0 indicates immediately before operating switch

Figl.1

t=0Tindicates immediately after operating switch

t=co indicates steady state condition

t=0 iL=0
t=0" =0
t=0 i1=V/R
)g i RO
AM—

- velt) ~

- P

Q)l s Vv((t)

Figl.2

t=0 V=0

t=0" V=0




The gosekamentary function of the solution is R-18

t=o0 Vc:V

Transient response of series —RL Circuit for sinusoidal
excitation

Figl.3

Consider a circuit consisting of Series resistance and inductance as shown in figl1.3.The switch S is closed
at t=0.

At t =0,a sinusoidal voltage V cos(wt+0) is applied to the series RL circuit,where V is amplitude of the wave
and 0 is phase angle.

Application of KVL to the circuit results in the following differential equation.

Vcos(wt + 0)=Ri+L - (1.1)
dt

The corresponding characteristic equation is

For the above equation, the solution consists of two parts, viz.complementary function and particular
integral.



The gosekamentary function of the solution is R-18

The particular integral can be determined by using undetermined coefficients.

By assuming

Substituting equations (1.4) and (1.5) in equation (2)

Substituting the values of A and B in equ(1.4),we get




wl y
i.Teci(EiE/) . R 5~ COS (wt + 0) + Vv "‘{‘2" +~{-(;;I,)-: s\ (e 051%
P R + (wl)
VR
Putting AM cos @ R2 + (I
o i
and e AT @ » R v (o1 )

To find M and &,We divide one equation by the other

Squaring both equations and adding,we get

The particular current becomes

The complete solution for the current i=ic+ip

Since the inductor does not allow sudden change in currents, at t=0, i=0



R-18

Examplel.l

In the circuit as shown in figure below, determine the complete solution for the current, when switch
S is closed at t=0.Applied voltage v(t)=100cos(103t+n/2).Resistance R=20Q and inductance L=0.1H.

Solution
By applying Kirchhoff’s voltage law to the circuit, we have

20i+0.14 =100 cos(10°t+n/2).

t

14200i=1000¢05(1000t+ /2)
t

(D+200)i=1000c0s(1000t+ w/2)
The complementary function ic=ce—200t
By assuming particular integral as

ip=Acos(wt + 0) + Bsin(wt + 0)
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We get

ip:#cos(wt + 6 — tan—lw*L)
VR?+(wL)? R

Where w = 1000 rad/sec

V=100V,0 ="
2

L=0.1H,R=20Q

Substituting the values in the above equation, we get

100 T 1100
cos(1000t + ; — tan

i =
P V202+(1000+0.1)2

1()() Vs
= cos(1000t +— _ o
101.9 ( 2 78.6°)

20
=0.98 n
cos(1000t + 7 — 78.6°)

The complete solution is

i=ce-200t+0,98c0s (1000t + _— 78.6°)
2

At t=0, the current flowing through the circuit is zero,.i.e.i=0

C:-O.98cos(721 — 78.6°)

The complete solution is

i=[-0.98cos(Z _ 78.6°)] e ~2°*+0.98c0s(1000¢ +Z_ 78.6%)]
2 2
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Consider a circuit consisting of resistance and capacitance in series as shown in fig. The switch, S,is closed at
t=0.At t=0,a sinusoidal voltage V cos(wt + 0) is applied to the R-C circuit,where V is the amplitude of the wave
and 6 =Phase angle.

Applying KVL to the circuit results in the following differential equation.

Veos(wt + e)zRi+lC [ — (1.7)

Réi+i= —Vw(sin wt + 0)

dt C

_ (D4 1)i="Vo(sin wt + 6) (1.8)

The complementary function ic= VAW (1.9)

The particular solution can be obtained by using undetermined coefficients.

ip=Acos( wt+ 0)+Bsin wt + 6) (1.10)

ip!=-Aw sin(wt + 0)+Bw coS( Wt+ §)--------r--m-m- (1.11)

Substituting equations 1.10 and 1.11 in 1.8 we get
g-Aw sin(wt + 0)+ Bw cos( wt+ 0)}+! Acos( wt+ 0)+Bsin wt +

)= -Vo Sih wt+0)

>

RC R

Comparing both sides

Awt+2= Yo
RC R
Bw+A =0
RC
From which,
VR

R2+(7)

mc
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Substituting values of A and B in equation (1.10), we have

ip= VR cgs( wt+ 0)+ - v sin wt + 0)
B2+(y WC(RZ+(=5)")
wcC
mc
Putting
Mcos 0= ViR 2
R +(_mc)

Msjz | v

wd )

To find out M and @,we divide one equation by other,

Mcos@ n o=
Msin @ AMP= HeR
Squaring both sides and adding, we get
v2
(M cos @)? + (Msin 1 2
0)? = -
RZ+( J)
\'%
M= ———
\/£R2+(l
) )
wc
The particular current becomes
vV +
— Y {2 ——cos (wt+ 6 + tan—1!

i=
p V(R2 ) )

wCR
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The complete solution for the current i=zic+ip

e, L vV cos(wt+O+tan-1 1 Yooooooooo.o. 11
i=Ke /RC :1-2—1 a)CR) (1.13)

21
VR +(,0)

Since the capacitor does not allow sudden change in voltages at t= %{cos 0

0,i

1
;COSQZK.F v cos (6 + tan—1 )

1/ WOUR

VR +(, ) )

=
F=

\Y% \Y —1 <
K

= cosf — r cos (6 + tan
VRZ+( 7,
)

wC

The complete solution for the currentis

1
I V1l cos(6+tan-1 ___ ) +
R e wCR

\/%RZ D)

3|
A e
£

)]

D

|

[ we ]

cos(60 +tan-1 ____
\/((RZ %
+
wC

Example 1.2.

In the circuit as shown in Figure below, determine the complete solution for the currentwhen switch S
is closed at t=0.Applied voltage is V(t)=50005(102t+1t/4).Resistance R=10Q and capacitance C=1uF.




R-18
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Solution:

By applying KVL to the circuit, we have

10i+_1 é idt=50cos(100t + 1t/4)
10—

»
10"+ i = —5x 103(sin 100t + 1/4)

10—6
t

[ | _ U =500(sin100t + 1t/4)
+
10—5

TR

(D+ -;F)i=—500(sin 100t + /4)

The complementary function ic=Ke 10

The particular solution ip=Acos( wt+ 0)+Bsin wt + 0)

1
We-getip=—co0s (ot + 6 + tan—! )
A"

wCR
VgRZ{Ll
) )
wC
T
0= _
rad 4
Where w = 100 —
sec
R=10Q C=1uF
500 ™ -1 1

P V(2
10 190x10—6) )

—=2—cos(100t+ "~ +tn )
* 100x10—6x10

ip= 4.99 x 10-3 cos (100t + = + 89.94°)




B

att=0.i= Ycosd = 50 TT=3534

10
.Tech (ECE)

R-

1

8

—t
i=k /10 +4.99x103 cos(100t+ Z+89.94°)
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Att=0

i
K=3.53-4.99 x 10-3cos ( + 89.94°)
4

Hence the complete solution is
i=[3.53—-4.99 x 10-3cos ( +89.94°)]e /1072 44,99 x 103 cos (100t + +  _
4 4
89.94°)
SINUSOIDAL RESPONSE OF RL.C CIRCUIT:
RN ¢ R 3

Voos (t + g)

D‘- N a.

Consider a circuit consisting of resistance, inductance and capacitance in series as shown in fig. The switch, S is
closed at t=0.At t=0,a sinusoidal voltage V cos(wt + 0) is applied to the RLC series circuit ,where V is the
amplitude of the wave and 6 =Phase angle.

Applying KVL to the circuit results in the following differential equation.

i 1
Vcos(wt + 9)=Rl-|;Ldl+ [ idt --------- (1.15)
dt C

Differentiating above equation, we get

d dt2 + c= —Vw sin(wt + 0)
t

R
R e A T 2 ) P— (1.16)
LD w

2

ﬁh‘l
= |

The particular solution can be obtained by using undetermined coefficients.
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ip=Acos( wt+ 0)+Bsin(wt + 0)----------- (1.17)

ip!=-Aw sin(wt + 0)+Bw cos( wt+ 0) (1.18)
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ip’=—Aw? cos( wt+ 6)—Bw?2sin(wt + 6) (1.19)

Substituting values of ip, ip* ,ip”in equ (1.16) we have

—Aw? cos( wt+ 8)—Bw?sin(wt + 0) + “[—Aw sin(wt + 6) + Bw

cos(wt+0)] + )
1[Acos(wt+ 0)+Bsin(wt+.0)]--"sin(wt+0) (1.20)

Comparing

both sides, we

haveSine

coefficients

R
—Bw2— Aw_+ 58 - Yo
L LC L

Solving (1.21) and(1.22) we get

Vw?R
12

A= 2
(Y =@ =)l

LC




(W= )V
LC
€c 1 R-18
LI L

Substituting values of Aand B in equation (1.17),We get

Vw2 wz_l 2 .
13%? o ( cbﬁ( wt+ 0)+----------u---- LC  sin(wt+ 0)
5 ’_I J..LDI N -

wR 1 R 2 12
[C.) —((w? _Lc) )] LIC ) —((w? —LC) )]
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Putting

VwZR

L
Mcos @ = (O —
L) —((@ = ) )]

np

1.2
(wz—_) Vw
LC

=

L[(w*f)l—((wz —L’lc) )]

i e

=

To find out M and @,we divide one equation by other,

1
M cos @ — tan Qf%L_w(,;

M sin @ R
(wL — 1 )
@ = tan~! [——“=]
R
Squaring both equations and adding we get
VZ
M cos @)2 .
1
D)2 = —
2 —
(RZ+ (), —wL
—M=
1 2
V(R2 + (ne—wL) )

The particular current becomes

(wL—L

= cos(wt+ 6 +tan-1[  oC])
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(1.24)

V24 —on))

To find out complementaryv function ,we have the
characteristic equation
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D2+ D+ ") = 0--comomeee- (1.25)
L LC
The roots of equation(1.25) are
DD=-— R + \/_32—1
1 2 oL (Z) T Ic

By assuming K;=— "
2L

Ke=V(H2_ 1
2L LC

D1

"

D= K:1 —K:

K; becomes positive, when(*) *
2l LC

The roots are real and unequal, which gives an over
damped response. Then equation (1.25)becomes

[D — (K1 +K2)][D — (K1 —K2)]i = 0

The complementary function of above equation is

v (wl—
ic=cieki+tk2)tyr2ett—*Zt4 .COS (wt+ 06 +

t_an—l [ ] wC .I)
VRz2+( L —o1))

e

2 becomes (R) _ L
ve (X <
n

3
<%

s
o




2L LC

Then the roots are complex conjugate, which gives an under

B.Tech TETE] R-13

= dampedrespomse: ...

Then equation (1.25) becomes

[D — (K1 +jK2)][D — (K1 —jK2)]i=0

L

The solution for above equation is
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ic=ekt[c1 cos k2t + c2 sin
2t

i=ic+ip (0L ="

==

i=ek1t[c1 cos k2t 1+ c2—sin‘1k2t-]~+ K 'cos (wt +
0 +tan—1 [ “C¢ 1)

Vi (R2+-El—wL)2)

1

R 2
k2 G =i
becomes
Zero
when

Then the roots are equal which gives

critically damped responseThen

equation (1.25) becomes (D — K1)(D

—K1)i=0
1L
The complementary function for the above equation is W
ic=eDt[c1 + c2t]
Therefore complete solution is
1=1C+1p
v wC
ekDt[c1 + c2t] + cos (wt + 6 + tan—1! [T])
1 2 (

V(RZ + (. —wl) )

Fs) = £ {f(t)} = [] " e (bt
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| J(t) (Function)

F(s) (Laplace Transform)

w(r) (unit step)
S(r) (unit impulse)

e il

‘ sin wt
cos ot
e “ sin ax¢

e cos ax

1/s
1
1
(s +a)

= 2

(% + w?)

=i

(s? + ®?)
w

(s +a)? + w*

(s+a)

(s + a)® + w?

t I/S2
|
‘ —"dfd(: ) sF(s)
| I S(t)dt F(s)/s
_ e ==
UNIT RAMP INPUT
r(t)
) t

Amplitude

*The ramp signal imitate the constant
characteristic of actual input signal.

e J.Jr =0
b lo 7<0

velocity

If A=1, the ramp signal is called unit ramp signal

Square input

Square wave

0.5

Time —
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Pulse input

o r r Vs (t)

Vi(t)=u(t)-u(t-T
V(s)=i-c
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UNIT —11:

Two Port Networks:

Impedance Parameters,
Admittance Parameters,

Hybrid Parameters,
Transmission (ABCD) Parameters,

Conversion of one of parameter to another,
Conditions for Reciprocity and Symmetry,

Interconnection of two port networks in Series, Parallel and Cascaded configurations,
Image Parameters,
[llustrative problems.

YV VVVVVVYY
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Introduction:

A general network having two pairs of terminals, one labeled the “input terminals’” and the other the “output terminals,’” is a very
important building block in electronic systems, communication systems, automatic control systems, transmission and distribution
systems, or other systems inwhich anelectrical signal orelectric energy enters the input terminals, is acted upon by the network, and leaves
via the output terminals. A pair of terminals at which a signal may enter or leave a network isalso called a port, and a network like the
above having two such pair of terminals is called a Two - port network. A general two-port network with terminal voltages and
currents specified is shown in the figure below. In such networks the relation between the two voltages and the two currents can be
described in six different ways resulting in six different systems of Parameters and in this chapter we will consider the most important

four systems

Impedance Parameters: Z parameters (open circuit impedance
parameters)

We will assume that the two port networks that we will consider are composed of linear elements and contain no independent

sources but dependent sources are permissible. We will consider the two-port networks showninthe figure below.

Fig 5.1: Ageneraltwo-
portnetworkwithterminalvoltagesandcurrentsspecified. Thetwo- port
network is composed of linear elements, possibly including dependent

sources, but not containing any independentsources.
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Thevoltageand currentatthe input terminalsare Vi & I3, and V, & I, are voltage and currentat the output port. Thedirections of 1 and I,

are both customarily selected as into the network at the upper conductors (and out at the lower conductors). Since the network is
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Linear and containsnoindependent sources withinit, V1 may beconsidered tobe the superpositionof two components,onecausedby 1,

Andtheotherbyl,.WhenthesameargumentisappliedtoV2, we getthe set of equations
V1 =Z1111 +Z1212

V2 =Z2111 +Z2212

[V1=1[Z1l

Where [V],[Z] and [I]areVoltage,impedanceandcurrentmatrices. ThedescriptionoftheZ parameters,definedin theabove

equationsisobtainedbysettingeachofthecurrentsequalto zero as givenbelow.
Z11=V1/l; | 1,=0 Z1,=Vi/ip | 11=0 Zn1=Vi/ly | 1,=0 Z2» =Vlly l 11=0

Thus, since zero current results from an open-circuit termination, the Z parameters are known as the Open-circuit Impedance
parameters. And more specifically Z11 & Z2; are called Driving point Impedances and Z1» & Z»; are called Reverse and

Forward transfer impedances respectively. A basic Z parameter equivalent circuit depicting the above defining equations is
+ /L

shown in the figure below.

Fig 5.2: Z-Parameter equivalent circuit
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Admittance parameters: ('Y Parameters or Short circuit admittance parameters)

The same general two port network shown for Z parameters isapplicable here also and is shown below.

Fig 5.3: A general two-port network with terminal voltages and currents

specified. The two- port network is composed of linear elements, possibly

including dependent sources, but not containing any independent sources.

Since the network is linear and contains no independent sources within, on the same lines of Z parameters the
defining equations for the Y parameters are given below. Iy and I, may be considered to be the superposition of
two components, one caused by Vi and the other by V> and then we get the set of equations defining the Y
parameters.

I1=Y11V1 +Y12V2

12 =Y21V1 +Y22V2

Where the Ys are no more than proportionality constants and their dimensions are A/V (Current/Voltage).

Hence they are called the Y (or admittance) parameters. They are also defined inthe matrix form given below.
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And in much simpler form as

[11=[YI][V]

Theindividual Y parameters are defined on the same lines as Z parameters but by setting either of the voltages V1 and

V2 as zero as given below.
The most informative way to attach a physical meaning to the y parameters is through a direct inspection of defining
equations. The conditions which must be applied to the basic defining equations are very important. In the first equation
for example; if we let V, zero, then Y11 is given by the ratio of I; to V1. We therefore describe Y11 as the admittance
measured at the input terminals with the output terminals short-circuited (V2 = 0). Each of the Y parameters may be
described as a current-voltage ratio with either V¢ = 0 (the input terminals short circuited) or V> = 0 (the output terminals

short-circuited):

Yu=1/Vi with V2=0
Yiz=11/V2 with V1=0
Y21 =12/V1 with V2=0
y22 = 12/V2 with V1=0

Because each parameter isan admittance which is obtained by short circuiting either the output or the input port,
the Y parameters are known as the short-circuit admittance parameters. The specific name of Y1 is theshort-
circuit input admittance, Yo, is the short circuit output admittance, and Y and Y21 are the short-circuit reverse

and forward transfer admittances respectively.

-
L
+__
L,
L
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h parameter representation is used widely in modeling of Electronic componentsand circuits particularlyTransistors.Hereboth
shortcircuitandopencircuitconditionsareutilized.

The hybrid parameters are defined by writing the pair of equations relating Vs, l1, Va2, and I,:

V1 =hi1.l1+h12.V2
I2 =h21.11+h22.V2

The nature of the parameters is made clear by first setting V2 = 0. Thus,

hi1 = V1/l1 with V2=0 =short-circuit input impedance

h21=12/12  with V2=0 =short-circuit forward current gain

Then letting 11 = 0, we obtain hi2 = V1/V2 with 11=0 = open-circuit reverse voltage gain

h22 = 12/V2 with 1:1=0 = open-circuit output admittance

Since the parameters represent an impedance, an admittance, a voltage gain, and a current

gain, they are called the “hybrid’’ parameters.

The subscript designations for these parameters are often simplified when they are applied to transistors. Thus, hy,
hiz, h21, and hy2 become h;, hy, hr, and ho, respectively, where the subscripts denote input, reverse, forward,

and output.
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Transmission parameters:

The last two-port parameters that we will consider are called the t parameters, the ABCD parameters, orsimplythe
transmission parameters. Theyaredefinedbytheequations

V1=A.V2-B.I2
11 =C.V2-D.I2
and in Matrix notation these equations can be written in the form

Vi = AB V2
= CD -2

where V1, V2, I1, and I, are defined as as shown in the figure below.

I -]
o-—t-Dl——O o———bz—f—o
In V] Vz Out
T AAR i,

Fig 5.6: Two port Network for ABCD parameter representation with Input and
output Voltages

andcurrents

The minus signs that appear in the above equations should be associated with the output current, as (—12). Thus,

both I and -1, aredirected totheright, the direction of energy orsignal transmission.
Note that there are no minus signs inthe t or ABCD matrices. Looking again at the above equations

we see that the quantities on the left, often thought of as the given or independent variables, are the input voltage and
current, Vi and Iy; the dependent variables, Vo and Iy, are the output quantities. Thus, the transmission parameters

provide a direct relationship between input and output. Their major use arises in transmission-line analysis and in
cascadednetworks.

The four Transmission parameters are defined and explained below.




g-Tesh &and C are defined with receiving end open circuited i.e. with I, =0 R-18

A = V./V. with |. = 0= Reverse voltage Ratio C

= 11/V2 with 12 =0 = Transfer admittance

Next B and D are defined with receiving end short circuited i.e. with V>, =0

B=V./~1. with V.= 0 = Transfer
ImpedanceD = 1./-1.  with V.=

0 =Reverse current ratio

Inter relationships between different parameters of two port networks:

Basic Procedure for representing any of the above four two port Network parameters in terms of the other parameters

consists of the following steps:

1. Write downthe defining equations corresponding to the parameters in terms of which the other
parametersare toberepresented.

2. Keepingthebasic parameters same, rewrite/manipulate thesetwo equationsinsuchaway that the variables V{,V;
JI1,and I, are arranged corresponding to the defining equations of the first parameters.

3. Thenbycomparing the parameter coefficients of the respective variables V,V;,11,and [; on theright

handsideofthetwosetsofequations wecangettheinterrelationship.

Z Parameters in terms of Y parameters:

Though this relationship can be obtained by the above steps, the following simpler method is used for Z

intermsofYandY interms of Z:

ZandYbeingthelmpedanceandadmittanceparameters(Inverse),inmatrixnotationtheyare governed by the

following inverserelationship.

(Z1=[v1’

Or:

Jj
[Zn leJz[Yn le]
Zy 2y Yo Yy

Thus:
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Z Parameters in terms of ABCD parameters:

The governing equations are:
Vi=AV,-Bl,
|1 = CVz —D|2

fromthe second governing equation [ I;:= CV, — DI, | we canwrite

f'l D
V. == = =
, [C.1,+C.12] A-BI,
_A,  AD-BC
_E.]ﬁ—hc ,IZ
Z.:‘—i‘ Z__:';‘—SC
BT rTTC
7 it e O
== Za=g

Now substituting this value of V2 in the first governing equation [V1= AV2 - Bl,] we get

Comparing these two equations for V1 and V2 with the governing equations of the Z parameter network we get Z
Parametersinterms of ABCD parameters:
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Z Parameters in terms of h parameters:
Thegoverningequationsofhparameternetworkare: V1 = h1111 + h12V2
12 =h2111 +h22 V2

From the second equation we get

- hy 1
by ly . by
7o)

Ay

Substituting this value of V> in the first equation for V1 we get:
VI =nHIi ‘rhu VZ

[y, 1]

] ’ | 4
-n'u Il ?hu]-—-ll > — .

hy ' hy %
A
:fﬁ;l,_&,lz

Now comparing these two equations for V1 and V with the governing equations of the Z
Parameter network we get Z Parameters in terms of h parameters:

Ah

Z —i ’ Zﬁ
e hos ¢ i
h, 1
21 -
Zoh =2t 7
5 hw-\ - L] SN

5 Here Ah = hii1h2z—hw2ha

Y Parameters in terms of Z parameters:

YandZbeingtheadmittanceandImpedance parameters (Inverse),inmatrixnotationtheyare governed bythe
followinginverse relationship.

[Y]1=[2]""

Or:
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Thus:
Y .:_Z_Z_-’—_, 3 -_-_E';
11 AZ 12 r7
Z s
Y, - A
» AZ =~ &LZ

Here AZ = ZiuZx»-7Z127Z21

The other inter relationships also can be obtained on the same lines following the basic three steps given in
thebeginning.

Conditions for reciprocity and symmetry in two port networks:

A two portnetworkis said to be reciprocal ifthe ratioof the output responsevariabletothe input excitation variableis
samewhentheexcitationandresponse portsareinterchanged.

Atwo port network is said to be symmetrical if the port voltages and currents remain the same when the input and
output ports are interchanged.

InthistopicwewillgettheconditionsforReciprocity andsymmetry forallthefournetworks. Thebasicprocedure
foreachofthenetworksconsistsofthefollowingsteps:

Reciprocity:

First we will get an expression for the ratio of response to the excitation in terms of the

particular parameters by giving voltage as excitation at the input port and considering the current in the

output port as response (byshortcircuitingthe output porti.esettingV2aszero
).i.e find out (12 /V1)

Then we will get an expression for the ratio of response to the excitation in terms of the same
parameters bygiving voltage as excitation at the output port and considering the current in the input

portas response ( by shortcircuitingtheinput porti.e.settingV1 aszero).i.efind out ( 1 /V2)
Equatingthe RHS ofthese two expressionswouldbethe condition forreciprocity

Symmetry:

FirstweneedtogetexpressionsrelatedtotheinputandoutputportsusingthebasicZorY parameter equations.
ThentheexpressionsforZi1 andZ;; (orY11 and Y2 ) are equatedtogetthe conmditionfor reciprocity.
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Z parameter representation: Condition for
reciprocity:
Let us take a two port network with Z parameter defining equations as given below:
Vi=Zuli+Z1, Vo=

Zy11+Z 1,

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the Z
parameters by giving excitation at the input port and considering the current in the output port as
response ( by shortcircuiting the output porti.e.setting V2 as zero ).The corresponding Z parameter circuitfor

this conditionisshowninthefigure below:

\ | In Qut I‘»

(PInotethedirectionof I, is negativesincewhenV;port isshortedthecurrentflowsinthe other direction)
Then the Z parameter defining equations are :

V1= 211.11—212.12 and 0

= ZZl-ll_ ZZZ-IZ

To gettheratioofresponse (l2) totheexcitation (V1) intermsofthe Zparameters l1istobe
eliminated fom the above equations.

Sofromequation2intheabovesetwewillget l1 = l2. Z22/ Z21
And substitute this in the first equation to get
V= (Z11-12-Zzz/zz1)—Z12-lz = 12[(211-Z22/Z21)—Z12] = 12[(Z11-Z22—Z12-Z21)/ Z21) ] I, -

Vi.Z21/(Z11 . Z22— Z12.271)

Next, we will get an expression for the ratio of response (I1) tothe excitation (V2) interms of the Z
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parameters by giving excitation V2 at the output port and considering the current I1 in the input port as
response (by short circuiting the input port i.e. setting V1 as zero). The corresponding Z parameter circuit
forthisconditionisshowninthefigurebelow:

I,
—0 o— -
.’
-0 In Out v,
—0 O~

(PInotethedirectionofcurrentl isnegativesincewhenViport isshortedthecurrentflows in the other
direction )

Then the Z parameter defining equations are :

0 = —Z11 . 11 + le.Iz and

Vo ==Z21.11+2Z22. 12

To gettheratioofresponse(l1) totheexcitation (V2) in termsofthe Zparameters |2 istobe
eliminated fom the above equations.

Sofromequationlintheabovesetwewillget 2 =l1. Z11/ Z12

And substitute this in the second equation to get

V,= (222-11-211/212)—221-11 = Il[(le-ZZZ/ZIZ)_ 221] - 11[(211-222—212-221)/ Z12) ]

l1=V2.Z12/(Z11 . Z22= Z12.221)

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses
l1 and |2 to be equal would be
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And this is the condition for the reciprocity.

Condition for symmetry:

To get this condition we need to get expressions related to the input and output ports using the basic Z
parameter equations.

Vi=Z11l1+Z11, Vo=

Zy1lh1+Z 1,

To get the input port impedance 12 is to be made zero. i.e V2 should be open.

V1 = le .|1 i.e Z11 =V1/|1 ||2=0

Similarly to get the output port impedance I1 is to be made zero. i.e Vi should be open.

Vz = 222 .|2 ie Zzz=V2/|2| |1=0

Condition for Symmetry is obtained when the two port voltages are equal i.e. V1 =Vz2and the two port currents
are equali.e.l1 =I2.Then

Vi/li=Va/lyi.e Z1n =2y,

And hence Z11 =17,; isthecondition for symmetryin Zparameters.
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Y parameter representation:

Condition for reciprocity :

Let us take a two port network with Y parameter defining equations as given below:

l1=Y11Vi+Y1,Vo o=

Y1Vi+Y22V,

First we will get an expression for the ratio of response (I2) to the excitation (V1) in terms of the Y
parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port as
response (byshortcircuitingthe output porti.e.settingVV2 aszero)

Then the second equation in Y parameter defining equations would become

l2=Y21V1 +0and l2/Vi= Yz

Then we will get an expression for the ratio of response (I1) to the excitation (V2) in terms of the Y
parameters by giving excitation (V2) at the output port and considering the current (11) in the input port
asresponse (byshortcircuitingtheinputporti.esettingVViaszero)

Then the first equation in Y parameter defining equations would become

|1=0 +Y12Vz and |1/V2 = Y12

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses
l1 and I2 to be equal would be

|1/V2 IZ /Vl

AndhenceY;.= Y.; istheconditionforthereciprocityintheTwoportnetworkwithY parameter
representation.
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Condition for
symmetry:

To get this condition we need to get expressions related to the input and output ports ( In this caseInputand
outputadmittances ) usingthebasicY parameter equations

l1=Y11Vi+Y1,V) =

YaVi+Y 22V,

To get the input port admittance, V2 is to be made zero. i.e V2 should be shorted.

l1=Y11.V1 ie Y11 =1/V1 |V2=0

Similarly to get the output port admittance Vi is to be made zero. i.e V1 should be shorted.

lo =Y .V2 ie Yzz = |2/V2 | V1=O

Conditionfor Symmetryisobtained whenthe two portvoltages are equali.e.V1 = V2 and the two portcurrents
areequali.e. l1 = I2. Then

l1/V1=12/V,

And hence Y11 = Y2 isthecondition for symmetryin Y parameters.

ABCD parameter
representation:

Condition for reciprocity:

Let us take a two port network with ABCD parameter defining equations as given below:
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V1 = AVz - Blz
1 =C.V2-D.l2

First we will get an expression for the ratio of response (l2) to the excitation (V1) in terms of the ABCD
parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port as
response(byshortcircuitingtheoutputporti.e.settingVV2aszero)

Then the first equation in the ABCD parameter defining equations would become

Vi =0-B.l; = B.I;

iel2/Vi=-1/B

Then we will interchange the excitation and response i.e. we will get an expression for the ratio of response (I1)to
the excitation (V2) by giving excitation (V2) at the output port and considering the current (I1) in the input portas
response (byshortcircuitingtheinput porti.e. setting V1 as zero )

Then the above defining equations would become
0 =A.V2—B.lz 11
=C.V2 —D.Iz

Substituting the value of 12 = A.V2 /B from first equation into the second equation we get

I,=CV,-D.AV, /B=V,(C-D.A/B)

ie I,/V.= (BC-DA)/B=-(AD-BC)/B

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses
l1 and |2 to be equal would be

l1/V> = IL/Vi

ie -(AD-BC)/B = -1/B

i.e (AD -BC) = 1
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Andhence AD- BC= 1 isthecondition for Reciprocity intheTwoportnetwork with ABCD
parameter representation.

Condition for symmetry:

Togetthiscondition weneedtoget expressions relatedtotheinput andoutput ports. Inthis caseit iseasy to
use the Z parameter definitions of Z11 and Z22 for the input and output ports respectively and get their
valuesintermsofthe ABCD parametersasshownbelow.

V1 =A.V2 —B.lz 11

=C.Vz —D.Iz

Z13=V1/l1 | 1,=0

Applying this in both the equations we get
Z11=V1/|1| |2=0 = (A.Vz— B|2)/(CV2 = D.|2) | |2=0

= (A.V2 - B.0)/(C.V2 - D.0)

= (A.V:)/(CV.) = A/C

le = A/C

Slmllarly Zzz =V2/|2 | |1=0
and using this in the second basic equation I1 = C.V2 - D.I2

weget 0 =C.V,-D.I;or C.V,=D.I; V, /
I,=D/C

Z22=DIC
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Andthe conditionforsymmetrybecomes 711 = Z»2ieA/C=D/COr A =D

Hence A = D is the condition for Symmetry in ABCD parameter
representation.

h parameter representation:

Condition for reciprocity :

Let us take a two port network with h parameter defining equations as given below:

V1 =h11.11+h12.V2 lz

=h21.11+h22.V2

First we will get an expression for the ratio of response (l2) to the excitation (V1) in terms of the h
parameters by giving excitation (V1) at the input port and considering the current (I2) in the output port as
response (byshortcircuitingthe output porti.e.settingVV2 aszero)

Then the first equation in the h parameter defining equations would become

Vi= hi1l1+h12.0 = hi1. Iy

And in the same condition the second equation in the h parameter defining equations would become

I; = h21.l1 +h22.0 = h21. I1

Dividing the second equation by the first equation we get

hz1 /hiy

IZ/Vl = (h21- 11)/(1111- 11)

Now the excitation and the response ports are interchanged and then we will get an expression for the
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ratio of response (I1) to the excitation (V2) in terms of the h parameters by giving excitation (V2) at the
output port and considering the current (1) in the input port as response ( by short circuiting the input
porti.e.settingV1 aszero)
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Then the first equation in h parameter defining equations would become

O=h11.11+h12.V2 i.e h11.11= - h12.V2

i.e. |1/V2= - h12/h11

Assuming the input excitations V1 and V2 to be the same, then the condition for the out responses
l1 and I2 to be equal would be

|1/V2 = IZ/Vl

i,e= —=hi2/h11= hai/h11

i.e. hiz =- hy

And hence [hi2= - hx] is the condition for the reciprocity in the
Two port network with hparameter representation.

Condition for symmetry:

To get this condition we need to get expressions related to the input and output ports. In this case also itis
easy to use the Z parameter definitions of Z11 and Z22 for the input and output ports respectively and get
theirvaluesintermsoftheh parametersasshownbelow.

h parameterequationsare: Vi=hi1 l1 + h12.V2
12 = h21. I1 + hzz.Vz
Firstlet us get Z11 :

Z11=Vi/l1 | 1,=0
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= h11 + h12.V2 / I

Applying the condition |2=0 in the equation 2 we get

0 =h21.11 +h22.V2 i.e —h21. I1 = hzz.Vz

or V2 = l1 (=h21/ h22)

Now substituting the value of V2 = l1 (=h21 / h22) in the above first expression for V1 we get
V1 = h11. 11 + h12. 11( —h21 / hzz)
OrVi/l1 = (h11.h22—h12.h21)/ h22 =Ah/h22

Or 211=Ah/ h22

Where Ah = (hll.hzz —hlz.h21) Nowletus
get Zzz:

Z2 = \V,/l2| I1=0

Applying the condition |1 = 0 in the second equation we get

I,= h21. 0+ hzz.Vz ie Vz/Iz = 1/ hzz
And Z22= 1/h22

Hence the condition for symmetry Z11 = Z22 becomes (Ah /h22) =(1/ h22 ) i.e Ah =1

Hence Ah =1 is the condition for symmetry in h parameter representation.
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41=Y,

Lh=1

A=D

Different types of interconnections of two port networks:

Series Connection:

Though here only two networks are considered, the result can be generalized for any number of two port
networks connected in series.

Refer the figure below where two numbers of two port networks A and B are shown connected in series. Allthe
inputand output currents &voltages with directionsand polarities are shown.

[ A [,A

I —— e
! v, A A VoA ;

- r
, 4
Ir 1,8 ’.:"' Out
) V.B B V,b

- O— ' b cm—

Fig : Series connection of two numbers of Two Port Networks

Open circuit Impedance parameters ( Z ) areusedincharacterizingtheSeriesconnectedTwo port
Networks.Thegoverningequations withZ parameters aregivenbelow:




e ) ————————————————————————————————————————

For network A :

Via =Zya hia +Zypp 124

Voa =Zyia lia + Zyp 14
And for network B:

Vi =Zug lig * Zygp g

Vas =Zyip Lig + Zpp 1y

ly=l, =1y
Iy =1, =y
VZ'V2A+VZB
Vi=Via+Vig

Now substituting the above basic defining equations for the two networks into the above expressions for
ViandV2 andusingtheabovecurrentequalitieswe get:

Vi=Via+Vis

HLyalia + Zipa p) 4 2yl 4 Zpp Lo

=0 (Zyp +Zyg)+ 1) (Z1y4 +Z,,p)
And similarly
VZ = VZA + VZB

=Lyl s+ Zpalop) + (Zyyplip + Zpglp)

Va=0L(Zy, +Zyp)+ 1, (Zypp +Z4yp)
Thus we get for two numbers of series connected two port networks:

Vi =Zyp + Zyyp) I, +(Z

124 + Z1g8) I

Vo=(Zyy + Zyg) Iy +(Zy, + Zyp) 1y

Or in matrix form:

il_| Zua -?HB ?12/1 ’lel:]ir ’1]
+ 2 | L,
L %2,

L %28 2 24 * Lop Coan * Ly




B.Tech (ECE) R-18

ThusitcanbeseenthattheZparametersfortheseriesconnectedtwoportnetworksarethe sumofthe Z
parameters ofthe individual twoportnetworks.

Cascade connection:

In this case also though here only two networks are considered, the result can be generalized for anynumber
oftwo port networks connectedincascade.

Refer the figure below where two numbers of two port networks X and Y are shown connected in cascade.All
theinput and output currents & voltages with directions and polarities are shown.

1, iy -Irx hy ~hy -1,
i t i}
Vi Vi x X sz vl Y Y sz Ovz
In ' 1 J, | ut

Fig 5.8: Two numbers of two port networks connected in cascade

Transmission ( ABCD ) parameters are easily usedin characterizing the cascade connected Two port
Networks.The governing equations with transmission parametersare givenbelow:

For network X:

Vix = Ax Vax = Bxlox
I,x =Cx Vax = Dx Ik

And for network Y:

Referring to the figure above the various voltage and current relations are:

L=hyxi-Ly=Ly:l,=1

Vi=Vix iVox =Viy iV =V,

Then the overall transmission parameters for the cascaded network in matrix form will become




BTech(eCY) R
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[ 28)[ 7]

Where

Thus it can be seen that the overall ABCD Parameter matrix of cascaded two Port Networks is theproduct ofthe
ABCDmatrices oftheindividual networks.

Parallel Connection:

Though here only two networks are considered, the result can be generalized for any number of two port
networks connected in parallel.

Refer the figure below where two numbers of two port networks A and B are shown connected in parallel.All
the input and output currents & voltages with directions and polarities are shown.

-?——’—fﬁ—‘

,’ ; o & A
!
| .
: | 1S
! '-"?: 8
Ihé;- |

Fig 5.9: Parallel connection of two numbers of Two Port Networks
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Short circuit admittance (Y) parameters are easily used in characterizing the parallel connected Twoport
Networks.Thegoverningequations withYparametersaregivenbelow:

For network A:



R-18
1a Via *Yi2a Vau

I
Ly =Y54 Via * Ypa Vou

And for network B:
Lz =Y115 Vis * Y128 Va8

Ly =Yyp Vig + Yopp Vi

Referring to the figure above the various voltage and current relations are:
Vi=Via=Vigi Vo =V, =V
L=0L,+1:1,=14;, + Lp

Thus

L=L,+I;
=G a4+ Yi24V24) * (M18Vi8 + Y28V28)
= + Yyp) Vi + (Vs + Y128) V>
L=5, +1y
=00 Y0 * Y2 4Yi8) + M1 8Y18 + Y228Y25)
=(Ym +YZIB)VI +(Y22A +Y2_,,!B)V2

Thus we finally obtain the Y parameter equations for the combined network as:

by =y +Yp) Vi # (Vi2s * Yi28) Vs
L =y * Vo)V + (Vs + Yyp) V>

And in matrix notation it will be:
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[“‘]-{Y!M *Yop Yioa * Yis || V1 |
j .1 L s * Yo Yoou * Y28 )L

Thus it can be seen thatthe overall Yparameters for theparallel connected two port networksarethe
sumoftheYparametersoftheindividualtwoportnetworks.

Image impedances in terms of ABCD parameters:

Image impedances Zi1 and Ziz of a two port network as shown in the figure below are defined as two valuesof
impedances such that:

a) Whenporttwoisterminatedwith animpedanceZiz,theinputimpedanceasseenfromPort one is Zi1 and
b) Whenportoneisterminatedwith animpedanceZii ,theinputimpedanceasseenfromPort two is Zi2

Vi Vs Zp
| l
-

Figure 5.10: pertining to condition (a) above

Corresponding Relations are: Zi= Vi/lx and  Zp=  Vao/-1;
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1 .
——— — Pt — )
- Iy T - 12 I
zl‘ [J V, V2 -~ Zﬂ
1 2

Figure 5.10: pertining to condition (b) above

Corresponding Relations are: Zi= Vi/=1l and Zp= Vi/l;

Such Image impedancesin termsof ABCD parameters for a two portnetwork are obtained
below:

The basic defining equations for a two port network with ABCD parameters are :

V1 =A.V2—B.lz I1

=C.V2-D.I,

First let us consider condition (a).

Dividing the first equation with the second equation we get

V, AV,-BI,

Ly =T
I, CV,-DI,
Butwealsohave Zj> = V2l =12 andsoV2= =Zizl2. SubstitutingthisvalueofV,intheabove we get
-AZ., ~ AZ
Z:l =—"2 . ’ll
-CZ, -D CZ, + - D




Nowsleéagraansider the condition (b): R-18

The basic governing equations [V1 = A.V2 = B.I2] and [l1 = C.V2 = D.l2 ] are manipulated to get

v._ PV Bl
2 AD-BC AD-BC
.. .
AD-BC AD-BC
z,-Y2 DV Bl
rad AT RET,

Butwealsohave Zj1 = Vi/-l1 andsoV1= - Zi1l1.SubstitutingthisvalueofV1intheabove we get:

_DZ,+B
il - Y

Solving the above equations for Zi1 and Ziz we get :

AB 7

i 7 ED' o

j"l')‘l)

VAC

Important formulae, Equations and Relations:

Z Paramaters :

= Y Parameters:

= hParameters:

ABCD Parameters:

Basic Governing equations in terms of the various Parameters:

Vi=Zuli+ 213l
Vy=Zuli+ 2yl

li = Y1V + Y12V,
L =YuVi+ YV,

V1 = h11. 11 +h12.V2

I2 = hai.l1 + h22. V2

1= AVz - Blz
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l1 =C.V2-D.l2

. Conditions for Reciprocity and symmetry for Two Port Networks
in terms of the variousparameters :

Condition fur
Lsymmetry
=2y
1=,
A hy =—hy, sh=1
ABCD AD-BC=1 oy

¢ Relations of Interconnected two port Networks :

e The overall Z parameters for the series connected two port networks are the sum of the Z
parameters of the individual two port networks.

e The overall Y parameters for the parallel connected two port networks are the sum of the Y
parameters of theindividual two port networks.

e The overall ABCD Parameter matrix of cascaded two Port Networks is the product of the ABCD
matrices of the individual networks.

Illustrative problems :

Example 1: Find the Z Parameters of the following Two Port Network and draw it’s equivalent
circuitin terms of Z1 Z2 and Zs .
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Solution: Applying KVL to the above circuit in the two loops ,with the current notation as shown, the
loopequationsforViand V2canbewrittenas:

Vi=LZ +(, +1,)Z,

or Vi=(Z,+2Z,), +Z,1, (1)
and Vy=L,Z,+ (I, + 1) Z, »
or V,=2,1, +(Z, + Z4) I, ...(if)

Comparing the equations (i) and (ii) above with the standard expressions for the Z parameter equationswe
get:

Zy =21+ 242y =Zy;
Zy=2,;Z,,=2,+2,

Equivalent circuit in terms of Z1 Z2 and Z3 is shown below.

v,

\)
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Solution:

From the basic Z parameter equations We know that

Z11=V1/11 | =0 Z1,

=Vi/in | 1=0Zy =
Vo/li | 1,=0 Z5; =
V,/l2| 1:=0

We will first find out Z11 and Z21 which are given by the common condition Iz =0
1. Wecanobservethat  Z;1=V1/l; with I;=0isthe parallelcombinationofR; and (Rz +R3).
Z11= Ry (Rz + Rz) /(R1+Rz + R';)

2.Z21=V2/lh | 12=0

By observing the network we find that the current 1 is dividing into I3 and I+ as shownin the figure where I3
isflowingthrough RZ2(and Rzalso since2=0)

Hence V2=D3xR
Fromtheprincipleofcurrentdivisionwefindthat I3 =I1.R1/(R1+R2 +R3) Hence
V2= I3xR2 =[I1.R1 /(R1#+R2+R3)].R2 = I1.R1 Rz2/(R1+R2+R3) And
Vz/I1 =R1Rz2 / (R1+Rz +R3)
Z;1= R1R; /(R1+R; +R3)
Nextwe will findoutZ12andZz2 which aregivenbythe commonconditionl1=03. Z12 =

Vill2 | 11=0
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Byobserving the network we find that the current Iz is now dividing into I3 and I+ as shownin the figure
wherelsisflowingthroughRi (andRzalsosincel1=0)

Hence Vi=IixRi
Again from the principle of current division we find that I+ =12.R2 / (R1+Rz2+R3) Hence Vi
= [4xR1 =[I2.R2 /(R1+R2 +R3)].R1 = [2.R1 Rz /(R1+R2 +R3)And
Vi/l2=R1 Rz / (R1+Rz + Rs3)

Z12= RiR; /(R1+R2 + R3)

4. Wecanagainobservethat Z22=V2/l2 with l1=0isthe parallel combination of Rz and (R1 + R3)

Z.2 = R, (R1 + R3) /(R1+Rz + R3)

Example 3 : Determine the Z parameters of the network shown in the figure below.

1). Wewillfirstfind out Z1; and Z,; whicharegiven by thecommon condition I, = 0 (Output open
circuited)

With this condition the circuit is redrawn as shown below.
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Since the current source is there in the second loop which is equal to I1 and 12 is zero, only current [1 flows
through the right hand side resistance of 10Q and both currents I1( both loop currents ) passthrough
theresistanceof5 (Qasshownintheredrawnfigure.

Now the equation for loop one is given by :

Vi=10xli+5(211)=2011and V1/l1 =200

=~ Vi/h | l2=0 = Zu=20Q
Next the equation for loop two is given by :
V2=10xl1i+5(211)=2011 and V2/l1 =200

2Vo/li [=0 = Zm=200

2). Nextwe will find out Z;; and Z; which aregiven by thecommon condition I, = 0 (input open
circuited)

With this condition the circuit is redrawn as shown below.

100 108 c

Now since the current I1 is zero ,the current source of I1 would no longer be there in the output loop and it is
removed as shown in the redrawn figure. Further since input current I1= 0 ,there would be no current in the input
side 10 and the same current [z only flows through common resistance of 5 (1 and output side resistance of
10 Q .With these conditions incorporated, now we shall rewrite the two loop equations ( for
inputViandoutputVz )togetZi2zand Z22

Equation for loop one is given by :
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Vi= 5Izand Vi/lz =5Q

=~ Vi/ly | 11=0 = Z;p=5Q



R-18

B.Tech (ECE
And the equation for loop two is given by:

V2 = 10xIz2+ 5xl2 =151z and V2/Iz2 = 150
Z2, =150

« Va/l2 ||1=0

FinaIIy: 211= 200 ; le = 50,’ 221 = 200; Zzz =150

Example 4: Obtainthe open circuit parameters ofthe Bridged T network shown inthefigure below.

30
AW
10 20 1
'H ll ¢ 2 ?‘
Vi 5Q V,
b f d

Open circuit parameters are same as Z parameters.

1). Wewillfirstfind out Z;;and Z>; which aregiven by thecommon condition I, = 0 (Output open

circuited)

With this condition the circuit is redrawn as shown below.
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Fromtheinspection of the figure in this condition itcanbe seen that ( sincelzis zero ) the two resistances
i.e the bridged arm of 3(Q) and output side resistance of 2(1 are in series and together are in parallelwith
theinputsideresistance of 1().

Hence the loop equation for Vi can be written as:
Vi=lix[(3+2)I11+5]=11x35/6and Vi/l1=35/6
A Vil |[I=0 = Z,,=35/60Q

Next the loop equation for V2 can be written as :

V2 =1I3x2 + 1x5
Butweknowfromtheprincipleofcurrentdivisionthatthecurrentls=l1x[1/(1+2+3)] =11x1/6 Hence V2= 11 x1/6

x2+l1x5=11x16/3 andV2/11=16/3Q

2 Vo/l |20 = Zn=16/3Q

2). Nextwe will find out Z1; and Z,, which aregiven by thecommon condition I, = 0 (input open
circuited)

With this condition the circuit is redrawn as shown below.
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Fromtheinspectionofthefigureinthiscondition itcanbeseenthat(sinceliiszero) thetwo resistances i.e the
bridged arm of 3Q and input side resistance of 1€} are in series and together are in parallel with the outputside
resistance of 2(). Further [2 = Is+16

Hence the loop equation for Vi can be written as : Vi=Is
x1 +12x5
Butweknowfromtheprincipleofcurrentdivisionthatthecurrentls=I2x[2/(1+2+3)]=I2x1/3 Hence V1= 12x1/3
x1+[2x5 =12x16/3 and V1 /12=16/3 Q
& Vafla =0 =""Zi;=16/3 Q

Next the loop equation for V2 can be written as:

V2 =16 x2 + [2x5

Butweknowfromtheprincipleof current divisionthatthecurrent s =I2 x[1/(1+2+3)] =l2x (3+1)/6 = (I2 x

2/3)
Hence V2 =12x(2/3)x2 +2x5=12x19/3 and V2 /I = 19/3
A Vo/l |20 = Z,=19/3Q

Example 5: Obtain Z parameters of the following T network with a controlled current source of
0.5 Iz in the input port.




B.Tech (ECE) R-18

1). Wewillfirstfind out Z;; and Z;; whicharegiven by thecommon condition I, = 0 (Output open
circuited)

With this condition the circuit is redrawn as shown below.

In this condition we shall first apply Kirchhoff's current law to the node ‘c’:
Then I1 = 0.513+13 (I3 beingthe current through the resistances of8 Qand5Q)i.e I =
05B+I3orli=1.5Bor 3=h/1.5 iel3=(2/3)h

Now we also observe that V1 = I3(8+5) =13. I3

Using the value of I3 = (2/3)l1 into the above expression we get Vi =

13(2/3)h andVi/ 11 = 26/3 = 8.67

2 Vi/ly |1,=0 = = Z;;=8.67Q

NextwealsoobservethatV2=5.13 and substituting the abovevalueofls = (2/3)liinto this expressionfor
V2 we get:

V2=5.1ieV2=5.(2/3)liieV2 /i =10/3 = 3.33Q

“Vo/li [I=0 = Z,,=3.330

2). Nextwe will find out Z;; and Z; which aregiven by thecommon condition I = 0 (input open
circuited)

With this condition the circuit is redrawn as shown below.
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a c 8 2 € I, £
Y
0.51, Ssa T
d f h

In this condition now we shall first apply Kirchhoff's current law to the node ‘e’:

Then 12 =0.5I3+I3 (0.5.I3 being the current through the resistance of 8 (1 and I3 being the current
through theresistancesof5(})

i.e I2=0.5I3+[3 or I2= 15[z or I3=12/1.5 ie Is;= (2/3)12

Now wealso observethatVi =(-0.513x8 +3x5) = I3 (itis to be noted here carefullythat - sign isto betaken
before0.5I3x8sincethe currentflowsthroughtheresistance of8 Qnowinthe reverse direction.

Using the value of I3 = (2/3)1zinto the above expression for V1 we get Vi =

(2/3)L2 and Vi/Io=  0.67

A VYL |L=0 = Z1;,=0.670

NextwealsoobservethatV2=5.13 and substituting theabovevalueofls = (2/3)Izinto this expressionfor V2
we get:

V2=5.1ieV2=5.(2/3)ieV2 /L =10/3 =333Q

Vz/lz |11=0 = Z21= 3.33Q
Example 6 : Find the Y parameters of the following Tr type two port network and draw it’s Y
parameter equivalent circuit in terms of the given circuit parameters.

Ys LNSL

I, a
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Applying KCL at node (a) we get

L=I+I,
=V, )y ¥V -%)T,
L=V, (Y3 +Xp)+(-Y;) Vs (D

Similarly applying KCL to node (c ) we get

L=1I -1,

L =VYe =(V] =V5) Yp
L=(=-Yg)Vy +(Y- +Y5) V, )

Comparing the equations (i) and (ii) above with the standard expressions for the Y parameter equationswe
get:

Y= )i Y, =-Y,
Y’l = ~YB :YIZ =i‘YC'+~Y s

Observing the equations (i) and (ii) above we find that :

ThetermsVi(Ya+Yg)and V,(Yc+Yg)arethecurrents throughthe admittances Yi1andY;, and
Theterms -Yg.Vz2and -Yg.V; arethedependentcurrentsourcesintheinputandtheoutput ports respectively.
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These observations are reflected in the equivalent circuit shown below.

In the above figure Y11 = (Ya+ Ys) & Y22 = (Yc+Ys) are the admittances and

Y12.V2 =-YB.V2 & Y21 .V1 =-YB .V1 are the dependent current sources

Example 7: Find the Y parameters of the following network

Solution: We will solve this problem in two steps.

1. Weshallfirst express the Z parameters of the given T network in terms of the impedances Z1,Z2 and Z3
using thestandardformulaswealreadyknowandsubstitutethegivenvaluesof Z;, Z; and Z3.

Za3x = F5q + =Z53 —— 7 120
Z4o = Z5 — — 7 160

Loy = Z3 —— 7160 :
225=22+Z3=—]80
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2. ThenconvertthevaluesoftheZ parametersintoY parametersi.eexpress theY parameters in
termsofZparametersusingagainthe standardrelationships.

: Ly = Zyay
N ~ 1 80 T
(= j120)( -/ 80)~( - 160)"
_£<p80

PV i . mho
16,000 200

’le
: Zuzzz "lezzl
ol e |
16000 100 \
n=7-7 lez Z
1122 1221
=120 —j
16000 133.33

mho.

Example 8: Find the “ h’ parameters of the network shown below. (fig12.34)
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First let us write down the basic * h’ parameter equations and give the definitions of the  h’
parameters.

Vi=hili+h: Vo I
=h21.11+h22.V2

h11 = Vi/l1 with V2=0 ha1=12/11  with V2=0

hi2=V1/V2 with11=0 ha2=12/V2  with 11=0

Now

1). Wewillfirstfindouth;; andh;; whicharegiven bythecommonconditionV; =0(Output short
circuited)

In this condition it can be observed that the resistance Rcand the current source ali become parallel withresistanceRs.

For convenience let us introduce a temporary variable V as the voltage at the node ‘0’. Then the currentthrough
theparallelcombination of Reand Rc wouldbeequalto

y =V(RB+RC)
R R RER
Rp+ R \

Then applying KCL at the node ‘0’ we get

V(R
i (B+RC)+a11
Ry R
1) V(Rz +R.)
Ry Re
V=(1—a)Il R, Re
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Nextapplying KVL atinputportweget Vi = [1.Ra+V and V1/11=Ra+V/ 11 Now usingthe

value of Vwe obtained above in thisexpression for Vi/ I+ we get

LT SO . L i
L AT REER
B C

R, (Rp+Ro)+(1-a)R, R,

= ohmf
RB + RC

Again from inspection of the figure above it is evident that

(l—ot)l1 RB
2 1 (RB+RC)
Therefore
1 =
hz1=’£ =—a—(1 a) R
Llyvo  (Rp+Rc)
~ (@ R+ Rp)
(Rz +R.) i

2). Nextwe will find out hy; and hz; which aregiven by thecommon conditionI; = 0 (Input open
circuited)

Now since 1 is zero , the current source disappears and the circuit becomes simpler as shown in the figure
below.
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Now applying KVL at the output port we get:

V,=1, (Rg + R¢)

12 1
2 Ii=0 'RB % RC
Again under thiscondition:

Vl = "2 RB

hm = ﬁ =—__*. \12 RB

Vz I =0 12 (RB + Rc)
__Rg

Ry + R-

Example 9 : Z parameters of the lattice network shown in the figure below.
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First we shall redraw the given lattice networkin asimpler form for easy analysis as shown below.

‘.

Iy a x
S N
Qz=-l |2
" c Ih—_ﬁ;—ﬂrd .
Z, Z,

s o T
b Y

Wewiillthen findoutZ;andZ;;whicharegivenbythecommonconditionl,=0(Output open circuited)

Itcanbeobservedthattheimpedancesinthetwoarms‘ab’ and‘xy’ aresamei.eZ1 +Z2 and their parallel
combinationis(Z1+7Z2)/2

Hence applying KVL at the input port we get

Z.+7Z

5 1 2

e
V VA
g A i o
L A5 2 .

Next we find that

V=V =Vi=2V, -1, Z))~(V; = 1,Z))
alZ L7
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(Vc and Vb being the potentials at points ‘¢’ and ‘d’)

It can also be observed from the simplified circuit that the currents I3 and I4 through the branches ‘ab’ and
‘xy’ are equal since the branch impedances are same and same voltage V1 is applied across both the
branches.Hencethecurrent Idividesequallyaslzandls

lels=la=1/2

Now substituting these values of I3 and I4 in the expression for V2 above:

! | Z,~Z
y 1 1 o 1
V‘ s ,_%g—zl
‘21 -~
{ 1,=0 “4
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Example 10: Find the transmission parameters of the following network (fig 12.51)

First let us write down the basic ABCD parameter equations and give their definitions.

V1 =A.V2 —B.lz 11

=C.V2 —D.Iz

A =Vi1/V2 withl2 =0
C=14/V2 withl2=0
B = Vi/-l> with V2= 0

D=li/~l2 with V2= 0

1).WewiillthenfindoutAandCwhicharegivenbythecommonconditionl,=0(Outputopen circuited)

The resulting circuit in this condition is redrawn below.

AL 10 10 I, L=0 ¢
+
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Applying KVL we can write down the two mesh equations and get the values of Aand C:

V, = I, x14(1; = 15)2

or Vl 431' ~213 A0
and 0=(ly~1,)2+ 1, (1+1) =41, 21,
| -
l,==1 (D))
3" 5 (
Utilising (i) in (1),
’ 1 4 .
“'] :31] “2)(:; 1] 3.’./, ﬁll@p
S Again,
] e
V= lyx1=2 1, o)
S — =2 mho=C.
V:, Iy =0

Dividing equation (zir) by (iv),

£

=4=A
Y,

Iy =0

2.) Next we will find out Band Dwhich aregiven by thecommon condition V; = 0 (Output short circuited)

The resulting simplified network in this condition is redrawn below.

Shorting
e o link
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The voltage atthe input portisgiven by: V1 = I1x1 + (I1 + 1) x2

ie. V1= 3li+212 (1)

Andthe mesh equation for the closed mesh through ‘cd’ isgivenby: 0 = I2x1

+(Ii+12)x2 or 312+ 211 = 0 or

It =-(3/2) B (i)

Using equation (ii) in the equation (i) above we get :
Vi=-(9/2) 2+ 2l2=-(5/2)Lz
Or V1/'IZ=B = (5/2)

And from equation (ii) above we can directly get

/-, =D =3/2

Hence the transmission parameters can be written in matrix notation as :
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&)

4

2

N || ot

Here we can seethat AD-BC=1and A#D

Hence the network is Symmetrical but not Reciprocal.



B.Tech (ECE) R-18

UNIT-III:

Locus diagrams:
» Resonance and Magnetic Circuits:
» Locus diagrams - Series and Parallel RL, RC, RLC circuits with variation
ofvarious parameters -
Resonance-Series and Parallel circuits,
Concept of band width and quality factor.
Magnetic Circuits- Faraday’s laws of electromagnetic induction,
Concept of self and mutual inductance,
Dot convention, Coefficient of coupling,
Composite magnetic circuits,
» Analysis of series and parallel magnetic circuits.

YV YV VYVYY
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: ith variation of vari _

Introduction: In AC electrical circuits the magnitude and phase of the current vector depends upon the values of R,L&C when the
applied voltage and frequency are kept constant. The path traced by the terminus (tip) of the current vector when the parameters
R,L&C arevaried is calledthe current Locus diagram . Locus diagrams are useful in studying and understanding the behavior of the
RLC circuits when one of these parameters is varied keeping voltage and frequency constant.

In this unit, Locus diagrams are developed and explained for series RC,RL circuits and Parallel LC circuits along with their internal
resistanceswhentheparametersR,LandCarevaried.

The term circle diagram identifies locus plots that are either circular or semicircular. The defining equations of such circle
diagramsarealsoderivedinthisunitforseriesRCandRL diagrams.

In both series RC,RL circuits and parallel LC circuits resistances are taken to be in series with L and C to highlight the fact that all
practical L and C components will have at least a small value of internal resistance. Series RL circuit with varying Resistance
R:

Refer to the series RL circuit shown in the figure (a) below with constant X and varying R. The current I lags behind the applied

voltage V by aphase angle © =tan™(X./R) foragiven valueof Ras shown inthe figure (b) below. When R=0we can see thatthe current
is maximum equal to /X, and lies along the | axis with phase angle equal to 90°. When R is increased from zero to infinity the
current gradually reduces from /X to 0 and phase angle also reduces from 90°to 0°

As canbe seen fromthe figure, the tip of the current vector traces the path ofa semicircle

With its diameter along the +ve I axis.

Fig 4.1(a): Series RL circuit with Fig4.1(b): Locus of current vector I.
with variation of R Varying Resistance R
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The related equations are:
I[L=VIZ  Sin©6=X./Z orZ =X//Sin© andCos©=R/Z
Therefore I = (V/XL) Sin©
For constant V and X, the above expression for I_isthe polar equation of a circle with diameter (V/X.) as shown in

the figure above.

Circle equation for the RL circuit: (with fixed reactance and variable Resistance):

The Xand Y coordinatesofthe current I are Ix= .

Sin© Iy=1.Cos ©
From the relations given above and earlier we get

Ix =(VIZ)(XLIZ) = VXJUz2 - 1)
and MVIZY(RIZBEHY R/IZf A 1 __ (2)

Squaring and adding the above two equations we get

12412 = (X 24+R2)] Z4= (V2Z2)] Z* = V%22 3)
X Y L

From equation (1) above we have Z2=V X, /Ix and substituting this in the above equation (3) we get:
I2+1y? = V2 (VXL Ix) = (VIXLU)Ix or
L+ =(VIX)Ix =0
Adding (V/2X.)? to both sides ,the above equation can be written as
[Ix=VI2X 2+1y?= (VI2XL)? 4
Equation (4) above represents a circle with a radius of (V/2X.) and with it’s coordinates of the
centre as (V/2X., 0)

Series RC circuit with varying Resistance R:

Refertothe series RC circuit shown in the figure (a) below with constant X¢ and varying R. The current I leads the




B.Tech !ECE! R-18
applied voltage V by a phase angle © =tan(Xc/R) for a given value of R as shown in the figure (b) below.WhenR=0

wecanseethatthecurrentismaximumequalto— V/Xc and liesalongthe negative laxis with phase angle equalto—
90% When R is increased from zero to infinity the current gradually reduces from —V/Xc to 0 and phase angle
also reduces from-90°to 0°. As can be seen from the figure, the tip ofthe current vector traces the path of a semicircle

butnowwithitsdiameteralongthenegative laxis.

Circle equation for the RC circuit: (with fixed reactance and variable Resistance):

Inthesameway aswegotforthe SeriesRLcircuitwithvaryingresistancewecangetthecircle equation for an RC
circuitwithvaryingresistanceas:
[Ix + VI2X¢ ]2+ V- = (V/Z)(c)2

whose coordinates of the centre are (-V/2Xc, 0) and radius equal to V/2Xc
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¥ 2R R=0

l R-’-r/.
Fig4.2(a): Series RCcircuit with Fig4.2(b):Locusofcurrentvectorlc
VaryingResistanceR with variation ofR

Series RL circuit with varying Reactance X.:

Refer to the series RL circuit shown in the figure (a) below with constant R and varying Xi.. The current I lags
behind the applied voltage V by a phase angle 6 = tan-}(X/R) for a given value of R as shown in the figure (b)
below. When Xi. =0 we can see that the current is maximum equal to V/R and lies along the +ve Vaxis with
phase angle equal to 0°. When X isincreased from zero to infinity the current gradually reduces from V/R to
0 and phase angle increases from 0° to 90°. As can be seen from the figure, the tip of the current vector
traces the path of a semicircle with its diameter along the +ve V axis and on to its rightside.

V A_Xl,: 0
o
A
Iy X
I R 5
—NW\~ :
VIR
Y %'XL 6
XL:oo 0 /IX o

Fig 4.3(a): Series RL circuit with varying X, Fig 4.3(b) : Locus of current vector I, with variation of X,
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Series RC circuit with varying Reactance X.:

Refer to the series RC circuit shown in the figure (a) below with constant R and varying Xc. The current Icleads the
applied voltage V by a phase angle 6= tan!(Xc/R) for a given value of R as shown in the figure

(b) below. When Xc =0 we can see that the current is maximum equal to V/R and lies along the V axiswith
phase angle equal to 0°. When Xcisincreased fromzero to infinity the current gradually reduces fromV/R to 0
and phase angle increases from 0° to -90°. As can be seen from the figure, the tip of the current vector traces the
pathofasemicircle with its diameter along the +ve V axis but now on to its left side.

4
Xeg=0
. R T
T — AAA s ol s e
: VIR
i o ;
. ([w 4 X :
; 6
‘
———— » 0 X

Fig4.4(a):SeriesRCcircuitwithvaryingX. Fig4.4(b):Locusofcurrentvectorlcwith variation of X

Parallel LC circuits:

Parallel LC circuit along with its internal resistances as shown in the figures below is considered here for
drawing the locus diagrams. As can be seen, there are two branch currents Ic and I. along with the total
current I. Locus diagrams of the current Ii. or Ic (depending on which arm is varied)and the total current I
aredrawnby varying Ri,Rc,X. andXc oneby one.

Varying X,:




BheyEcent Ic through the capacitoris constantsince Rcand Care fixed and itleads the voltage veatog OV

y anangle B¢ =tan (Xc/Rc] asshowninthe figure (b). The currentli through the inductances thevector OlL .
It's amplitude is maximum and equal to V/R. when XL is zero and it is in phase with the applied voltage
V. When Xvis increased from zero to infinity it's amplitude decreases to zero and phase will be lagging the voltage
by 90°. In between, the phase angle will be lagging the voltage V by an angle 01 = tan'! (X./Rvw).The locus of
the current vector I. is a semicircle with a diameter of length equal to V/R.. Note that this is thesame locus
what we got earlier for the series RL circuit with X1 varying except that here V is shown horizontally.
Now, to get the locus of the total current vector Ol we have to add vectorially the currents Ic and I. . We
knowthatto getthe sum of two vectors geometrically we haveto place one ofthe vectors staring point (we will
take varying amplitude vector I.)at the tip of the other vector (we will take constant amplitude vector
Ic)and then join the start of fixed vector Ic to the end of varying vector I.. Using this principle we can get the
locus of the total current vector OI by shifting the I1 semicircle starting point O to the end of current vector
Olc keeping the two diameters parallel. The resulting semi circle IcIBr shown in the figure in dottedlinesis
thelocus ofthetotal currentvector Ol.

L &k
Y,
/R, .
7{
|
!
|— T circLE
], x=0/
78 3
Q\ /L o \/

Fig 4.5(b): Locus of current vector I in Parallel LC circuit when X is varied from 0 to o

Varying X¢:
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Fig.4.6(a) parallel LC circuit with Internal Resistances R.and Rcin series
with L (fixed) and C(Variable) respectively.

The current I. through the inductor is constant since R.and L are fixed and it lags the voltage vector OVby an
angle O, = tan'! (X1/R1) as shown in the figure (b). The current Ic through the capacitance is the vector Olc.
It's amplitude is maximum and equal to V/Rc when Xcis zero and it is in phase with the applied voltage V. When
Xcis increased from zero to infinity it's amplitude decreases to zero and phase will be leading thevoltage by
90°. In between, the phase angle will be leading the voltage V' by an angle 8¢ =tan'! (Xc/Rc). The locus of the
current vector Icis asemicircle with a diameter of length equal to V/Rc as shownin the figure below. Note that
this is the same locus what we got earlier for the series RC circuit with Xc varying exceptthathereV is
shownhorizontally.

Now, to get the locus of the total current vector Ol we have to add vectorially the currents Ic and I . We
know that to get the sum of two vectors geometrically we have to place one of the vectors staring point (we will
take varying amplitude vector Ic)at the tip of the other vector (we will take constant amplitude vector I.) and
then join the start of the fixed vector . to the end of varying vector Ic. Using this principle we can getthe
locus of the total current vector OI by shifting the Ic semicircle starting point O to the end of current vector
Ol. keeping the two diameters parallel. The resulting semicircle I.IBr shown in the figure in dottedlinesis
thelocus of thetotal currentvector OI.

Malla Reddy College of Engineering and Technology(MRCET)
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Y

N _
) _-Xc=0 oy
N
\—> Y Cixde
\
\l
JBTOEOJ
|

Fig4.6 (b) : Locus of current vector I in Parallel LC circuit when X is varied from 0 to oo

Varying R;:

The currentIc through the capacitoris constant since Rcand C are fixed and itleads the voltage vector OVbyan
angle ©¢ =tan'! (Xc/Rc) as shown in the figure (b). The current I. through the inductance is the vector Ol.. It's
amplitude is maximum and equal to V/Xi. when Rvis zero. Its phase will be lagging the voltage by 90°. When
Ru is increased from zero to infinity it's amplitude decreases to zero and it is in phase with the applied
voltage V. In between, the phase angle will be lagging the voltage V by an angle 6= tan'! (X./Rv). The locus
of the current vector Ii. is a semicircle with a diameter of length equal to V/R1. Note thatthisis the same locus
what wegotearlier for the series RL circuit with Rvarying except thathereVisshownhorizontally.

Malla Reddy College of Engineering and Technology(MRCET)
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| — 1

Fig. 4.7 (a)parallelLC circuitwithInternalResistances R (Variable) andR((fixed) inseries with L and C
respectively.

Now, to get the locus of the total current vector Ol we have to add vectorially the currents Ic and I . We
knowthat to getthe sum of two vectors geometrically we haveto placeone of the vectors staring point (we will
take varying amplitude vector Iv)at the tip of the other vector (we will take constant amplitude vector
Ic)and then join the start of fixed vector Ic to the end of varying vector I.. Using this principle we can get the
locus of the total current vector OI by shifting the I. semicircle starting point O to the end of current vector
Olc keeping the two diameters parallel. The resulting semicircle IcIBr shown in the figure in dottedlinesis
thelocus of the total currentvector Ol.

x
T ae
| b, X
.
\ N\
Ro=o \ \
‘;A g o5 l = \\,\777\ -V
o \
' oL\ T, - L A
| XL_\ = ‘-\
| ——_ L= \g\'
1 I ; IC’\'ota\)
=\ 3 /_—» T GCirele
(e XL l S
Y =1 =
’ T [Shy
L Ty Grtle
BL
1R.=0

Fig 4.7(b) : Locus of current vector I in Parallel LC circuit when R, is varied from 0 to

Varying R¢:

Malla Reddy College of Engineering and Technology(MRCET)
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Y R

.

F\i]g. 4.8(a) paralle] LC circuit with Internal Resistances R. (fixed) and R:
(Variable)” "in series

with L and C respectively.

The current I through the inductor is constant since Ru and L are fixed and it lags the voltage vector OVby an
angle OL = tan'! (X./RL) as shown in the figure (b). The current I¢c through the capacitance is the vector Olc.
It's amplitude is maximum and equal to V/Xc when Rc is zero and its phase will be leading thevoltage by 90°.
When Rc is increased from zero to infinity it's amplitude decreases to zero and it will be in phase with the
applied voltage V. In between, the phase angle will be leading the voltage V by an angle 8¢ = tan'! (Xc/Rc). The
locus of the current vector Ic is a semicircle with a diameter of length equal to V/Xc as shown in the figure
below. Note that this is the same locus what we got earlier for the series RC circuit with R varying except
thathere Vis shown horizontally.

Now, to get the locus of the total current vector Ol we have to add vectorially the currents Ic and I . We
know thatto get the sum of two vectors geometrically we have to place one ofthe vectors staring point (we will
take varying amplitude vector Ic)at the tip of the other vector (we will take constant amplitude vector I.) and
then join the start of the fixed vector . to the end of varying vector Ic. Using this principle we can getthe
locus of the total current vector OI by shifting the I¢ semicircle starting point O to the end of current vector
Ol. keeping the two diameters parallel. The resulting semicircle ILIBr shown in the figure in dottedlinesis
thelocus of thetotal currentvector OI.

Malla Reddy College of Engineering and Technology(MRCET)
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Fig 4.8(b) : Locus of current vector I in Parallel LC circuit when R¢ is varied from 0 to

Resonance:

Series RLC circuit:

The impedance of the series RLC circuit shown in the figure below and the current [ through the circuit are given
by :

Z=R+jwL+1/jwC = R+j(wL-1/wC) I =

Vs/Z
R : ¢
/ AN r60\ {(
- V,‘ P‘d V’ b Vl >

V:.‘ Q L ))

Fig 4.9: Series RLC circuit

The circuit is said to be in resonance when the Inductive reactance is equal to the Capacitive reactance.
ie. XL = Xcor wL = 1/wC. (i.e. Imaginary of the impedance is zero) The frequency at which the
resonance occurs is called resonant frequency. In the resonant condition when Xw.
=Xcthey cancel with each other since theyare in phase opposition(180° out of phase) and net impedance of the circuitis
purely resistive. In this condition the magnitudes of voltages across

Malla Reddy College of Engineering and Technology(MRCET)
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the Capacitance and the Inductance are also equal to each other but again since they are of opposite
polaritytheycancelwitheachotherandtheentireappliedvoltageappearsacrossthe Resistance alone.
Solving for the resonant frequency from the above condition of Resonance : wL = 1/wC
2nfill =1/2nfiC
f2 = 1/4m2LC and f =1/2mVLC
In a series RLC circuit, resonance may be produced by varying L or C at a fixed frequency or by varying
frequency atfixed Land C.

Reactance, Impedance and Resistance of a Series RLC circuit as a function of frequency:

From the expressions for the Inductive and capacitive reactance we can see that when the frequencyis zero,
capacitance acts as an open circuit and Inductance as a short circuit. Similarly when the frequency is infinity
inductance acts as an open circuit and the capacitance acts as a short circuit. The variation of Inductive and
capacitive reactance along with Resistance R and the Total Impedance are shown plotted in the figure
below.

As can be seen, when the frequency increases from zero to « Inductive reactance X. (directly proportionalto
w) increases from zero to © and capacitive reactance Xc (inversely proportional to w) decreases from

-« to zero. Whereas, the Impedance decreases from « to Pure Resistance R as the frequency
increasesfromzerotofr(ascapacitivereactancereducesfrom

- and becomes equal to Inductive reactance ) and then increases from R to < as the frequency
increases from fr to « (asinductive reactance increases from its value at resonant frequency to « )

Fig 4.10: Reactance and Impedance plots of a Series RLC circuit

Phase angle of a Series RLC circuit as a function of frequency:

Malla Reddy College of Engineering and Technology(MRCET)
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Fig4.11 : Phase plot of a Series RLC circuit

The following points can be seen from the Phase angle plot shown in the figure above:

[] At frequencies below the resonant frequency capacitive reactance is higher than the inductivereactanceand
hencethephaseangleofthecurrentleadsthevoltage.

o Asfrequencyincreases from zerotofr the phase angle changes from-90°to zero.

M At frequencies above the resonant frequency inductive reactance is higher than the capacitivereactanceand

hencethephaseangleofthecurrentlagsthevoltage.
e Asfrequencyincreases from fr and approaches «,the phase angle increases fromzero and approaches90°

Band width of a Series RLC circuit:

The band width of a circuit is defined as the Range of frequencies between which the output power is half
of or 3 db less than the output power at the resonant frequency. These frequencies are called the
cutoff frequencies, 3db points or half power points. But when we consider the output voltage or
current, the range of frequencies between which the output voltage or current falls to 0.707 times of the
value at the resonant frequency is called the Bandwidth BW. This is because voltage/current are
related to power by a factor of v 2 and when we are consider v 2 times less it becomes 0.707. But still these
frequencies are called as cutoff frequencies, 3db points or half power points. The lower end frequency
is called lower cutoff frequency and the higher end frequency is called upper cutoff frequency.

Malla Reddy College of Engineering and Technology(MRCET)
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Fig 4.12: Plot showing the cutoff frequencies and Bandwidth of a series RLC circuit

Derivation of an expression for the BW of a series RLC circuit:

We know that BW =f> - f1 Hz

If the current at points P1and Pz are 0.707 (1/v 2) times that of I max ( current at the resonant frequency)
then the Impedance of the circuit at points P1 and P2 isv'2 R (i.e.V 2 times the impedance at )

ButImpedanceatpointP1is givenby: Z = VR?+(1/wiC-wiL)? and equating thisto V2R

we get: (1/01C)-wiL=R e (1)
Similarly Impedance at point P2 is given b y:Z=+ R+(® 2L-1/w2C )? andequating thisto
V2 Rweget: wel- (1/w2C) =R —eeee- 2)

Equating the above equations (1) and (2) we get:
1/wiC-wil = w2l -1/w2C

Rearranging we get L(witwz) = 1/Cl(witw2)/ wiwz] ie wiwz = 1/LC
But we already know that for a series RLC circuit the resonant frequency is given by 2= 1/LC T herefore: w1 w2
=w?----(3)and1/C=w 2L (4), ;
Next adding the above equations (1) and (2) we get:

1/w1C-w1L+ w2L-1/w2C =2R

(w2-w1)L+(1/w1C-1/w2C) = 2R
(02-w1)L+1/Cl(w2-w1)/w1w2) =2R  —mee- (5)

Usingthevaluesof wiwz and 1/C from equations (3) and (4) above into equation (5) above we get:(w:2
-w1)L+w?L[(wz-w1)/w?) = 2R
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OrfinallyBandwidth BW =R/2TL - (7)

Sincef:liesinthe centre of thelower and upper cutoff frequencies f1 and f2 using the above equation (6) we
can get:

fi= f—RMWL 9)
fo= f+RMTL e (9)

Further by dividing the equation (6) above by fr on both sides we get another important
relation: (f2=f1)/ fr=R/2mf L or BW/ fr=R/2m fr L---------------- (10)

Here an important property of a coil i.e. Q factor or figure of merit is defined as the ratio of the
reactance totheresistance ofacoil.

D1 = a1 i N ——— (11)

Now using the relation (11) we can rewrite the relation (10) as

Quality factor of a series RLC circuit:

The quality factor of a series RLC circuit is defined as:

Q =Reactive power in Inductor (or Capacitor) at resonance /Average power at Resonance

Reactive power in Inductor at resonance = [?XL
Reactive power in Capacitor at resonance = [?Xc
Average power at Resonance =R

Herethepowerisexpressedintheform I2X (notasV?/X)sinceliscommonthroughR.LandC in the series RLC
circuitanditgetscancelled duringthesimplification.

Therefore Q = I2XL / IR =12Xc / I?R
P A R 1 4 ()
Or Q=Xc/R =1wWrRC------m-mmmmmmmmmmmemm e (2)

From these two relations we can also define Q factor as:
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Substituting the valueof wr = 1/VLC intheexpressions (1) or (2) forQ abovewe cangetthe value of Q
interms of R, L,C as below.

Q= (1/VIO)L/R = (1/R)(VL/C)

Selectivity:

Selectivity of a series RLC circuit indicates how well the given circuit responds to a given resonant
frequency and how well it rejects all other frequencies. i.e. the selectivity is directly proportional to Q factor.A
circuit with a good selectivity (or a high Q factor) will have maximum gain at the resonant frequency and will
have minimum gain at other frequencies .i.e. it will have very low band width. This is illustrated in the
figure below.

T

2%
e

\ ~0,
3.
Y . o

TN

1. Frequency

Fig 4.13: Effect of quality factor on bandwidth Voltage Magnification at resonance:

At resonance the voltages across the Inductance and capacitance are much larger than the applied voltage
in a series RLC circuit and this is called voltage magnification at Resonance. The voltage magnification
isequaltothe Q factorofthecircuit. Thisis proven below.

If we take the voltage applied to the circuit as V and the current through the circuit at resonanceas

| then

Thevoltageacrosstheinductancel is: Vi=1IXL= (VIR) wrL and

ThevoltageacrossthecapacitanceC is: Ve =1Xc = VIR w:C

But we know that the Q of a series RLC circuit = wr L/ R = 1/R wr C UsingtheserelationsintheexpressionsforVi and
Vcgivenaboveweget VL = VQ and Vc =VQ

The ratio of voltage across the Inductor or capacitor at resonance to the applied voltage in a series RLC
circuitiscalled Voltage magnification andis givenby
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Magnification =Q=V,/V orV¢c/V
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Important points In Series RLC circuit at resonant frequency :

Theimpedance ofthe circuitbecomes purely resistiveand minimum i.e Z=R

The currentin the circuit becomes maximum
ThemagnitudesofthecapacitiveReactanceandlnductiveReactancebecomeequal

The voltage across the Capacitor becomes equal to the voltage across the Inductor at resonanceand is Q times
higherthanthevoltageacross theresistor

S N N

Bandwidth and Q factor of a Parallel RLC circuit:

Parallel RLC circuit is shown in the figure below. For finding out the BW and Q factor of a parallel
RLC circuit, since it is easier we will work with Admittance , Conductance and Susceptance
insteadofImpedance,ResistanceandReactancelikeinseriesRLCcircuit.

y-

Fig 4.14 : Parallel RLC circuit

Thenwe havetherelation: Y=1Z=1R +1/jwL + jwC =1/R +j (wC - 1/wL)

For the parallel RLC circuit also, at resonance, the imaginary part of the Admittance is zero and hence the
frequency at which resonance occurs is given by: wC - 1/wL = 0. From this we get: wC = 1/wiL
and wr = 1/VLC

which is the same value for wr as what we got for the series RLC circuit.

At resonance when the imaginary part of the admittance is zero the admittance becomes
minimum.( i.e Impedance becomes maximum as against Impedance becoming minimum in series RLC
circuit ) i.e. Current becomes minimum in the parallel RLC circuit at resonance ( as against current
becoming maximum in series RLC circuit) and increases on either side of the resonant frequency as shown
inthe figure below.
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Fig 4.15: Variation of Impedance and Current with frequency in a Parallel RLC circuit

Here also the BW of the circuit is given by BW = f,-f; where f2 and fi are still called the upper and lower cut off
frequencies but they are 3db higher cutoff frequencies since we notice that at these cutoff frequencies the
amplitude of the current is V2 times higher than that of the amplitude of current at the resonant
frequency.

The BW is computed here also on the same lines as we did for the series RLC circuit:

If the current at points P1 and P2 is v 2 (3db) times higher than that of Imin( current at the resonant
frequency) then the admittance of the circuit at points P1 and P2 is also v 2 times higher than the
admittance at fr)

Butamplitude of admittance atpoint P1isgivenby: Y = V1/R2+(1/wiL-01C)? andequating this to V2 /Rwe
get

1/wiL - wiC SIS ) P— 1)

Similarly amplitude of admittance at pointP2is given by: Y = V1 JR2+(w2C - 1/w2L)? and equating thisto v/
2 /Rwe get

2C - /w2l = 1/R ----nmmmmo- (2)
Equating LHS of (1) and (2) and further simplifying we get

1/wil - w1C

02C - 1/waL

1/wil+1/wal 01C +w2C
1/L [(o1 + 02)/ w1w2] = (01 + w2)C

1/LC = w12
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Next adding the equations (1) and (2) above and further simplifying we get
1/wil - w1C€ + w2C - 1/w2L = 2/R (w2C -
w1C) + (1/oL-1/w2L) =2/R

(w2-w1)C+1/L[(w2-w1)/ wiwz] = 2/RSubstituting
the value of w12 = 1/LC
(w2-m1)C + LC/L [(w2 - w1)] = 2/R(w2
-w1)C+C[(w2-w1)] = 2/R2 C
[(w2-w1)] =2/R
Or[(w2-w1)] = 1/RC

From which we get the band width BW = f2-f1 = 1/2mw RC
Dividingbothsidesbyfr weget: (fo-f1)/ fr = 1/21 fr RC ---------- (1)

Quality factor of a Parallel RLC circuit:

The quality factor of a Parallel RLC circuit is defined as:
Q =Reactive power in Inductor (or Capacitor) at resonance /Average power at Resonance
Reactive power in Inductor at resonance = VZ/X.
Reactive power in Capacitor at resonance = V?/Xc
Average power at Resonance =V?R

Here the power is expressed in the form V2/X (not as I*X as in series circuit) since V is common across R.L
andCintheparallel RLCcircuitanditgetscancelledduringthesimplification.

Therefore Q = (V2/XL) / (VAR) = (V3 Xc) | (V3R)
ie.Q=R/X =RlwL e (1)

or Q=R/Xc=wRC 2)

From these two relations we can also define Q factor as :

Malla Reddy College of Engineering and Technology(MRCET)



B.Tech (ECE) R-18

Q = Resistance /Inductive (or Capacitive ) reactance at resonance

Malla Reddy College of Engineering and Technology(MRCET)



B.Tech (ECE) R-18

Substituting the value of wr = 1/vLC inthe expressions (1) or (2) for Q above we cangetthe value of Q
interms of R, L,C as below.

Q= (1/VIORC = R(VC/L)

Furtherusingtherelation Q = wr RC ( equation 2above)intheearlierequation(1)wegotin BWviz. (f2-f1)/ fr =
1/27f  RC weget: (fo-f2)/ fr =21/Q or Q =1/ (f2-f1) =fr / BW

i.e. In Parallel RLC circuit also the Q factor is inversely proportional to the BW.

Admittance, Conductance and Susceptance curves for a Parallel RLC circuit as a function of frequency :

o The effect of varying the frequency on the Admittance, Conductance and Susceptance of a parallel
circuitisshownin the figure below.

e InductivesusceptanceBL isgivenbyBL = - 1/wL. Itisinverselyproportionaltothefrequencyw
and is shown in the in the fourth quadrant since it is negative.

e C(Capacitivesusceptance Bc isgivenby Bc = wC. Itisdirectly proportionaltothe frequency w
and is shown in the in the first quadrant as OP .It is positive and linear.

e NetsusceptanceB = Bc- BL andisrepresentedbythecurveJK.Ascanbeseenitiszeroatthe resonant frequencyfr

e The conductance G = 1/R andis constant

e ThetotaladmittanceY andthetotal current| are minimum at theresonantfrequencyas shown by the curve VW

- /
v
Admittance v
Y N
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Fig4.16:Conductance,SusceptanceandAdmittanceplotsofaParallelRLCcircuit Current

magnification in a Parallel RLC circuit:

Justas voltage magnification takesplace across the capacitance and Inductanceattheresonant frequency in a
series RLC circuit, current magnification takes place in the currents through the capacitance and Inductance
at the resonant frequency in a Parallel RLC circuit. This is shown below.

Voltage across the Resistance =V = IR

Currentthroughthelnductanceatresonancel. = V/wrL = IR/wrL = |. R/wrL = 1Q Similarly

CurrentthroughtheCapacitanceatresonancelc = V/(1/wrC) =IR/(1/w:C) =I(Rw:C) = 1Q

From which we notice that the quality factor Q = I./ | or Ic/ | and that the current through the inductance
andthe capacitanceincreases by Q timesthatofthe currentthroughtheresistorat resonance. .

Important points In Parallel RLC circuit at resonant frequency :

Theimpedance ofthe circuitbecomes resistiveand maximum i.e Z= R

The currentinthe circuit becomes minimum

Themagnitudesofthecapacitive Reactanceand Inductive Reactancebecome equal
Thecurrentthrough theCapacitorbecomesequalandoppositetothecurrentthroughthe Inductor
atresonance andisQtimeshigherthanthecurrentthroughtheresistor

Magnetic Circuits:

0.

Introduction to the Magnetic Field:

Magnetic fields are the fundamental medium through which energy is converted from one form to another in
motors, generators and transformers. Four basic principles describe how magnetic fields are usedin
these devices.

Acurrent-carryingconductor produces amagneticfieldintheareaaroundit.

Explained in Detail by Fleming’s Right hand rule and Amperes Law.

L

Atimevaryingmagneticflux induces avoltageina coilof wireifitpassesthroughthatcoil. (basis

of Transformeraction)

Explained in detail by the Faradays laws of Electromagnetic Induction.

2.
3.

Acurrent carrying conductorinthe presence ofa magnetic fieldhas aforceinducedinit ( Basis of Motoraction)
A moving wire in the presence of a magnetic field has a voltage induced in it ( Basis of Generator action)
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Wewillbestudyinginthisunitthefirsttwoprinciplesindetailandtheothertwoprinciplesin ~ the next unit
onDCmachines.

Twobasiclawsgoverningtheproductionofamagneticfieldbyacurrentcarryingconductor:

The direction of the magnetic field produced by a current carrying conductor is given by the
Flemings Right hand rule and its’ amplitude is given by the Ampere’s Law.

Flemings right hand rule: Holdtheconductor carrying thecurrentinyourright hand suchthat
the Thumb points along the wire in the direction of the flow of current, then the fingers will
encircle the wire along the lines of the Magnetic force.

Ampere’s Law : The line integral of the magnetic field intensity H around a closed magnetic
path is equal to the total current enclosed by the path.

This is the basic law which gives the relationship between the Magnetic field Intensity H and the current I
andismathematically expressed as

H.dl =] et

where H is the magnetic field intensity produced by the current Inet and dl is a differential elementof
lengthalongthepathofintegration.H ismeasuredinAmpere-turns per meter.

Important parameters and their relation in magnetic circuits :

e Considera current carrying conductor wrapped around a ferromagnetic core as shownin the figure below.
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Applying Ampere’s law, the total amount of magnetic field induced will be proportional to the amount of
current flowing through the conductor wound with N turns around the ferromagnetic material as
shown. Since the core is made of ferromagnetic material, it is assumed that a majority of the magnetic
field will be confined tothecore.

The path of integration in this case as per the Ampere’s law is the mean path length of the core, |c. The current
passing withinthepathofintegrationlnet isthen Ni,sincethecoilof wirecuts thepathofintegrationN
timeswhilecarrying thecurrenti.HenceAmpere’sLawbecomes: Hlc = Ni

Therefore H = Ni/lc

In this sense, H (Ampere turns per meter) is known as the effort required to induce a magnetic field. The
strength ofthemagneticfield flux producedin the core also depends on the material of the core. Thus: B = pH
where

B = magnetic flux density [webers per square meter, or Tesla (T)]
M= magnetic permeability of material (Henrys per meter)
H = magnetic field intensity (ampere-turns per meter)
The constant t may be further expanded toinclude relative permeability which can be defined as below:
1 /Mo
where o = permeability of free space (equal to that of air)

Hence the permeability value is a combination of the relative permeability and the permeability of free space.
The value of relative permeability is dependent upon the type of material used. The higher the amount
permeability, thehigherthe amount of flux induced in the core. Relative permeability is a convenient way to
compare the magnetizability of materials.

Also, because the permeability of iron is so much higher than that of air, the majority of the flux in an iron core
remains inside the core instead of travelling through the surrounding air, which has lower permeability.
The small leakage fluxthatdoesleavetheironcoreisimportantin
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determining the flux linkages between coils and the self-inductances of coils in transformers and motors.

e Inacoresuchasshowninthefigureabove

B = puH =uNi/I,
Now, tomeasurethetotal fluxflowingintheferromagneticcore, considerationhasto be madeinterms

ofits crosssectional area (CSA). Therefore:

® = B.dA where: A = cross sectional area throughout the core.
Assumingthatthefluxdensityintheferromagneticcoreisconstantthroughouthence the equation

simplifies to: ®=B.A

Takingthepreviousexpressionfor B we get @ = 1 NiA/lc

Electrical analogy of magnetic circuits:

The flow of magneticfluxinducedin the ferromagnetic coreis analogousto theflowofelectric currentinan
electricalcircuithencethenamemagnetic circuit.

The analogy is as follows:

(a) (b)

(a) ElectricCircuit (b) Electrical Analogy of Magnetic Circuit
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Referring to the magnetic circuit analogy, F is denoted as magnetomotive force (mmf) which is similar to
Electromotive force in an electrical circuit (emf). Therefore, we can say that F is the force which pushes magnetic
flux around a ferromagnetic core with a value of Ni (refer to ampere’s law). Hence F is measured in ampere turns.
Hence the magnetic circuit equivalent equation is asshown:

F = @.R (similar to V=IR)
We already have the relation ® = NiA/l and using thiswegetR=F/ ® = Ni/ ®
R =Ni /(pNiA/) =1/ pA

e The polarity of the mmf will determine the direction of flux. To easily determine the direction of flux, the
‘right hand curl’ ruleisapplied:

Whenthedirectionofthecurledfingersindicatesthedirectionofcurrentflowthe resulting thumb direction
willshowthemagnetic flux flow.

e The element of R in the magnetic circuit analogy is similar in concept to the electrical resistance.
It is basically the measure of material resistance to the flow of magnetic flux. Reluctance in this analogy
obeys the rule of electrical resistance (Series and Parallel Rules). Reluctance is measured in Ampere-
turns per weber.

e The inverse of electrical resistance is conductance which is a measure of conductivity of a material.
Similarly theinverse of reluctance is known as permeance P which represents the degree to which the
material permits theflow of magnetic flux.

e By using the magnetic circuit approach, calculations related to the magnetic field in a
ferromagnetic materialare simplifiedbutwithalittleinaccuracy.

Equivalent Reluctanceof a series Magneticcircuit : Regseries = R1+ R2+ R + ...

Equivalent Reluctance of a Parallel Magnetic circuit:
1/Reqparallel = 1/R1 + 1/R2 +
1/Rs+ ...Electromagnetic Induction and Faraday’s law -

Induced Voltage from a Time-Changing Magnetic Field:
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Faraday’s Law:
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Whenever a varying magnetic flux passes through a turn of a coil of wire, voltage will be
induced in theturnofthewirethatisdirectlyproportionaltotherateofchangeof theflux
linkage with the turn of the coil of wire.

eind a —d@/dt
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eind = -k. d@/dt

The negative sign in the equation above is in accordance to Lenz’ Law which states:

The direction of the induced voltage in the turn of the coil is such that if the coil is short
circuited, itwould produce acurrentthat wouldcause aflux which opposestheoriginal change
of flux.

And k is the constant of proportionality whose value depends on the system of units chosen. In the SI
systemof units k=1 andthe above equation becomes:

€ind = - d@/dt

Normallyacoilisusedwithseveralturnsandifthereare Nnumberofturnsinthecoilwiththe =~ same amount of
flux flowing through it then: eind =- N d@/dt

Change in the flux linkage N@ of a coil can be obtained in two ways:

1. Coil remains stationary and flux changes with time (Due to AC current like in Transformers and this is
calledStatically induced e.m.f)

2. Magnetic flux remains constant and stationary in space, but the coil moves relative to the magnetic field so
as to create a change in the flux linkage of the coil ( Like in Rotating machines and this is a called
Dynamically inducede.m.f.

Selfinductance:

From the Faradays laws of Electromagnetic Induction we have seen that an e.m.f will be induced in a
conductor when a time varying flux is linked with a conductor and the amplitude of the induced e.m.f is
proportional totherate of change ofthevarying flux.

If the time varying flux is produced by a coil of N turns then the coil itself links with the time varying flux
producedbyitselfand an emfwillbeinducedinthesame coil. Thisiscalledself inductance .

The flux @ produced by a coil of N turns links with its own N turns of the coil and hence the total flux linkage is
equal to N@ = (W N> A /1) | [using the expression ® =y NiA/l we already developed] Thus we see
that the total magnetic flux produced by a coil of N turns and linked with itself is proportional to the current
flowingthroughthecoili.e.

NG alor NG =L 1

From the Faradays law of electromagnetic Induction, the self induced e.m.f for this coil of N turns is
givenby:
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eind = - N dd/dt = -L dl/dt
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The constant of proportionality L is called the self Inductance of the coil or simply Inductance and its value
isgivenbyL = (4 N? A/l).Iftheradius of the coilisr then:

L=(uNzmrz /1) i

From the above two equations we can see that Self Inductance of a coil can be defined as the flux
produced per unit current i.e Weber/Ampere (equation1) or the induced emf per unit rate of change of
currenti.e Volt-sec/ Ampere (equation 2)

The unit of Inductance is named after Joseph Henry as Henry and is given to these two
combinations as :

1H=1WbA! = 1VsA'

Self Inductance of a coil is defined as one Henry if an induced emf of one volt is generated when
the current in the coil changes at the rate of one Ampere per second.

Henry is relatively a very big unit of Inductance and we normally use Inductors of the size of mH ( 10 H) or uH
(103H)

Mutual inductance and Coefficient of coupling:

In the case of Self Inductance an emf is induced in the same coil which produces the varying magnetic field.
The same phenomenon of Induction will be extended to a separate second coil if it is located in the vicinity of the
varying magnetic field produced by the first coil. Faradays law of electromagnetic Induction is equally
applicable to the second coil also. A current flowing in one coil establishes a magnetic flux about that coil and
also about a second coil nearby but of course with a lesser intensity. The time-varying flux produced by the
first coil and surrounding the second coil produces a voltage across the terminals of thesecond coil. This
voltage is proportional to the time rate of change of the current flowing through the firstcoil.

Figure (a) shows a simple model of two coils L1 and Lz, sufficiently close together that the flux produced bya
current i1(t) flowing through L:i establishes an open-circuit voltage v2(t) across the terminals of
L>Mutual inductance,M21,is defined such that

V2(t) =Maadia(t)/dt ----m-ememeeee- [1]
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Figure4.17 (a)Acurrent il1throughL1producesanopen-circuit voltagev2ZacrossL2. (b)A currenti2
throughL2producesanopen-circuitvoltagevlacrossL1.

The order of the subscripts on M21 indicates that a voltage response is produced at L2 by a currentsource
atLi.Ifthesystemisreversed,asindicated

in fig.(b) then we have

vi(t)=Maadiz(t)/dt -------------=---- [2]

It can be proved that the two mutual inductances Mi2 and Mz1 are equal and thus, Mi2 = M21 =

M. The existence of mutual coupling between two coils isindicated by a double-headed arrow, as shown inFig.
(a )and (b)

Mutual inductance is measured in Henrys and, like resistance, inductance, and capacitance, is a positive quantity.
The voltage M di/dt, however, may appear as either a positive or a negative quantity dependingon whether
thecurrentisincreasingordecreasingataparticularinstantof time.

Coefficient of coupling k : Is given by the relation M = kvL1 L2 and its value lies between 0 and

1. It can assume the maximum value of 1 when the two coils are wound on the same core such that flux
produced by one coil completely links with the other coil. This is possible in well designed cores with high
permeability. Transformers are designed to achieve a coefficient of coupling of 1.

Dot Convention:

The polarity of the voltage induced in a coil depends on the sense of winding of the coil. In the case of
Mutualinductanceitisindicated byuseofamethodcalled“dot convention”. Thedot
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convention makes use of a large dot placed at one end of each of the two coils which are mutually
coupled.Signofthe mutualvoltageisdeterminedasfollows:

A current entering the dotted terminal of one coil produces an open circuit voltage with a positive voltage
reference atthedotted terminal of thesecond coil.

Thus in Fig(a) i1 enters the dotted terminal of L1, v2 is sensed positively at the dotted terminal of
Lz, and v, = M dllldt .

It may not be always possible to select voltages or currents throughout a circuit so that the passive sign
convention is everywhere satisfied; the same situation arises with mutual coupling. For example, it may be more
convenient to represent v2 by a positive voltage reference at the undotted terminal, as shown in Fig (b). Then v2
=-M di1/dt . Currents also may not always enter the dotted terminal as indicated by Fig (¢)and (d). Then
we note that:

A current entering the undotted terminal of one coil provides a voltage that is positively sensed at the
undotted terminal of the second colil.

5 3 f\J s & I -~ m /ﬂ‘j 9
: di,
Ly L3 ng ve=-M—
TS Pyresy,
(a) (b)
i i
L2 ” . i
2 e 2 e P e
di di
L L, eyt L L i
1 2 M at 1 2 =M Tt
. - . ° o
O -—-—Q (o -0

Figure 4.18 : (a) and (b) Current entering the dotted terminal of one coil produces a voltage thatis sensed
positively at the dotted terminal of the second coil. (c) and (d) Current entering the undotted terminal of
one coil produces a voltage that is sensed positively at the undotted terminal of the second coil.

ImportantConceptsandformulae:

Resonance and Series RLC circuit:

wZ=wi1w2=1/LC ~ wr =Vwiwz2 = 1/VLCBW = R/21rL
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Q=wrL/R =1wRC andinterms of R,Land C = (1/R) (VL/C)

Q=fr/BW i.e. inverselyproportionaltotheBW

Voltage magnification Magnification = Q = V,/V orV¢/V

Important points In Series RLC circuit at resonant frequency:

Theimpedance ofthecircuitbecomes purelyresistiveand minimum i.e Z=R
Thecurrent inthe circuit becomes maximum
Themagnitudesofthecapacitive Reactanceand Inductive Reactancebecome equal

The voltage across the Capacitor becomes equal to the voltage across the Inductor at resonance andis Q
times higherthanthe voltage across theresistor

Resonance and Parallel RLC circuit:

Wl=wiw2=1/LC -~ wr= Vvwiw2 = 1NLC  same asin series RLCcircuit
BW =1/21t RC

Q =R/wlL = wRC and interms of R,Land C =R (VCIL) [Inverseofwhatwegot in
Series RLCcircuit]

Q =fr/ BW In Parallel RLC also inversely proportional to the BW
Current Magnification = Q= I./I orlc/ 1

Important points In Parallel RLC circuit at resonant frequency :

e Theimpedanceofthecircuitbecomesresistiveand maximum i.e Z=R

e Thecurrentinthecircuit becomes minimum

e Themagnitudesofthecapacitive Reactanceand Inductive Reactance become equal

e Thecurrentthrough theCapacitorbecomesequalandoppositetothecurrentthroughthe
Inductoratresonance andisQtimeshigherthanthe currentthroughtheresistor

Magnetic circuits :

Ampere’s Law: H .dl=| net and in the case of a simple closed magnetic pathofa
ferromagneticmaterialitsimplifiestoHI=Ni or H=Ni/l
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Magneticfluxdensity:

B =uH
Magneticfieldintensity: H = Ni/l

Totalmagneticfluxintensity: @=BA =pHA= puNi A/l
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Reluctanceofthemagneticcircuit: R = mmf/Flux = Ni/ @ = I/pA

Faradays law of electromagnetic Induction:

Selfinducede.m.fofacoilofNturnsisgivenby: eind =-Nd@/dt = -L dl/dt wherelListhe
inductanceofthe coilofNturnswithradiusr andgivenby L = (u N2 1rr?/1) i
EquivalentReluctanceofaseriesMagneticcircuit: Regseries = Ri1+R2+ Rs+....
EquivalentReluctanceofaParallelMagneticcircuit: 1/Regparaitel = 1/R1+ 1/R2+ 1/R3 + ..
Coefficientofcouplingk Isgiven bythe relation: M =kvL1iL2

Illustrative examples:

Example 1: Atoroidal core of radius 6 cms is having 1000 turns on it. The radius of cross section of the core 1cm.Find
the currentrequired to establish a total magneticflux of 0.4mWb.When

(@) The core isnonmagnetic
(b) Thecoreis madeofironhaving arelative permeability of 4000

Solution:

This problem can be solved by the direct application of the following formulae we know in magnetic circuits:
B =®/A=pHand H = Nil/l

Where
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B =magneticflux density (Wb/mtr?) ® = Total magnetic flux
(Wb))
A =Crosssectional area ofthe core(mtr?) W = Wrilo = Permeability

(Henrys /mtr) tr =Relative permeability ofthematerial ( Dimensionless)
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wo = free space permeability = 4w x 10”7 Henrys /mtr

H =Mageneticfield intensity AT/mtr N = Numberofturnsofthe coil

i =Currentinthecoil (Amps) | = Lengthofthecoil
(mtrs)

from the above relations we can get i as

i=HI/N=(1/ n)(®/A)1/ N=(1/p)(®/N)1 /A=(1/n)(®/N)* 2nr/nr2] = [2r @ /

WNrc? ]

Where rr is the radius of the toroid and rc is the radius of cross section of the coil
Nowwecancalculatethe currentsinthetwo cases by substituting therespectivevalues. (a) Here p =po.

Thereforei = (2x6x10-2x4x10-*)/ (4mx107x1000x10-#) = 380Amps
(b) Here p = prpo. Therefore i = (2x6x102x4x10*)/(4000x4wx 107x1000x 104) = 0.095 Amps

Ex.2: (a) Draw the electrical equivalent circuit of the magnetic circuit shown in the figure below. The area of the
coreis 2x2 cm? .The length of the air gap is 1cm andlengths of the other limbs are shown in the figure. The

relative permeability of the coreis 4000.

(b) Find thevalueofthecurrent‘i’ intheabove example which producesafluxdensityof1.2 Teslain the airgap.

Thenumber fturns ofthe coilare 5000.

[b | - f
; 6.5 cm L!:J

h

i
</UUU
\EF

f

=32 cm 50 32om—,

Solution: (a)
To draw the equivalent circuit we have to find the Reluctances of the various flux paths independently.
Thereluctanceofthepathabcd isgivenby: Ri = length of the path abcd /prwA

= (32x10%)/(4mx107 x4000x4x10*) =1.59 x 10°AT/Wb
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The reluctance of the path afed is equal to the reluctance of the path abcd since it has the same length, same
permeability and same crosssectional area. Thus Ri = Rz

Similarly the reluctance of the path ag (Rs)is equal to that of the path hd (Rs) and can be calculated as:
Rs = Re= (6.5x102)/(4mx107x4000x4x104) = 0.32x 10°
AT /Wb

The reluctance of the air gap path gh Re can be calculated as : Re = length of the air gap path
gh/uoA

(Hereitistobe noted thaty istobetakenas poonlyand p:shouldnot beincluded) Re = (1x10%)/
(4mx107x4x10*) = 198.94x10° AT/Wb

The equivalent electrical circuit is shown in the figure below with the values of the reluctances as givenbelow

the circuit diagram.
/ \F SR @,y
Y 1o,
l \?‘-“4
Ri =Rz = 159x10° AT/Wb Rs =Rs= 0.32x10°> AT/Wb Re = 198.94x10°
AT /Wb
Solution: (b) Thisproblemissolvedinthefollowingsteps:

1. First the flux through the air gap ®c is found out. The flux in the air gap @®cis given by the
productofthe Flux density inthe air gap B and the crosssectional area of the coreinthat region A . Hence
®c =B.A=1.2x4x104=0.00048 Wb

Itistobenotedherethat thesame fluxwouldbepassingthroughthereluctances R3,Rc&
R4
2. Next,the Flux in the path afed ®zis to be found out . This can be found out by noticing that the mmf
across the reluctance R; is same as the mmf across the sum of the reluctances R3,Rg, and R4 coming in
parallelwith R4.Hence byequatingthem we get
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®c ( Rs+Re+R4) = ®2R2 fromwhichweget D2=0Pc(Rs+Rc +R41)/ Rz

Hence®2 =  [0.00048x(0.32+ 198.94+ 0.32)x105]/ 1.59x105 = 0.06025 Wh

1. Next, the total flux ® flowing through the reluctance of the path abcd Riproduced by the
winding is to be found out.Thisisthe sumofthe airgap flux ®; and the fluxintheouterlimb of the core
®;:i.e ®=®Pc + P2=(0.00048 + 0.06025) = 0.0607 Wb

2. Next, The total mmf F given by F = Ni is to be found out . This is also equal to the sum of the mmfs
across the reluctances R1and Rz [or (Rs+ Re + Ra )] = ® R1 + ®2 Rz from whichwe can get ‘i’ as: ‘i’ =
(PR1+®2R2)/N = [0.0607x1.59x10° + 0.06025x1.59x10°] /5000 = 3.847 Amps

is = 3.847 Amps
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UNIT-IV TRANSMISSION LINES-I

Types of transmission lines

Transmission line Parameters- Primary & Secondary Constants
Transmission Line Equations

Expressions for Characteristics Impedance

Propagation Constant

Phase and Group Velocities

Infinite Line Concepts

Lossless transmission line

Distortion

Condition for Distortionlessness transmission

Minimum Attenuation

YV V V V V VYV V V V VYV V VY

[Mlustrative Problems.



TRANSMISSION LINE THEORY

,.
1.1. INTRODUCTION

The transfer of energy from one point to another takes place through either wave guides or
transmission lines. Transmission lines always consist of atleast two separate conductors
between which a voltage can exist, but the wave guides involve only one conductor; for
cxample, a hollow rectangular or circular waveguide within which the wave propagates.
Transmission lines are a means of conveying power from one point to another. There are two
types of commonly used transmission lines.

1. Parallel wire (balanced) line
2. Coaxial (unbalanced) line

Parallel wire line : 1t is a common form of transmission line known as open wire line as
shown in Fig. 1.1(a). It is employed where balanced properties are required. Telephone lines,
line connecting between folded dipole antenna and TV receiver are good examples of parallel
or balanced or open wire line. The parallel wire lines are not used for microwave
transmission.

Coaxial line : Coaxial lines consist of inner and outer conductor spacers of dielectric as
shown in Fig. 1.1(). It is used when unbalanced properties are needed, as in the
interconnection of a broadcast transmitter to its grounded antenna. It is employed at UHF and
microwave frequencies.

Quier conducter

' Inner conductor
Quter casing

/ Conductors
............................. / Dielectric

Quter casing

(a} Parallel wire (balanced) line (b) Coaxial (unbalanced) line
Fig. 1.1. Transmission lines

1.2. TRANSMISSION LINE AS CASCADED T SECTIONS

To study the behaviour of transmission line, a transmission can be considered to be made
up of a number of identical symmetrical T sections connected in series as in Fig.1.2. If the
last section is terminated with its characteristic impedance, the input impedance at the first
section is Z. Each section is terminated by the input impedance of the following section.

EMTL



1
Z, Z, Z, Z, 2
7 | Bpeas | = == | "} & o
Z, 4Z, Z, 47,

By the binomial theorem,

Z, HE_I_\I _ Z, Hif.zl L ZL ¥,
7 4z, ) 7z 244z /73 422J

Substituting this value in e’ equation,

T = 1+ZI + Zi ]+
<7 2Z, Z, 2

Lozt

]

When applied to the incremental length of line Ax, then Z, = Z Ax, Z, = N and

propagation constant becomes y Ax,

T e L LTV vl IO PR WY P (axP - 128 BT ¥ Ay

5 : o Ax -
Series expansion for an exponential 72" is

Y (AxY Y (Ax)
LT e

et™ = 1+yAx +

Equating the above two expressions,

QL ZY Y (Ax)? (N ZY P (Ax)
2 " 8 &

:fZ(szz :f3£Ax}3
5 F G s

ZY Ax~+ S
v2 Ax 3 (Ax)? : 1 ZY )? ('\,‘ ZY ) (Ax)?
Y+ 5 + 6 + ... = 3 ZY T@ Ax '+ 3 Y

If Ax tends to zero then,

y = A\ ZY
This is the value of propagation constant in terms of Z and Y.

Since each conductor of transmission line has a certain length and diameter, it must have
resistance and inductance; moreover the two conductors are separated by a dielectric medium
(say, air), therefore there must be a capacitance between them. This dielectric between the
conducting wires may not be perfect, and hence a leakage current will flow creating leakage
(shunt) capacitance between the conductors. These four parameters resistance (R), inductance
(L), capacitance (C) and conductance (G), all distributed along the lines are known as
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Consider a T section of transmission line of length dx. Let V + dV be the voltage and
I + d1 be the current at one end of T section. Let V be the voltage and I be the current at the
other end of this section.

The series impedance of a small section dx 1s (R + jL®) dx. The shunt admittance of this
section dx is (G + jCw) dx.

The voltage drop across the series impedance of T sections i.e., the potential difference
between the two ends of T section is

V+dV-V = I(R+jol)dx
dV = 1(R+jol)dx
dv

= = I(R:tjoL) (L)
dv |
== 17

The current difference between the two ends of T section is due to the voltage drop across
the shunt admittance.

[+dl-1 = V(G+joC)dx
dl = V(G+joC)dx
dl :
e V(G +joC) s CE2)
dl
AN VY
Differentiating equation (1.1) w.r.t. *x’,
d*V _ dl
ae = ®+jel) o

dl
Substituting the value ofa in the above equation

d?V , o
e = (R+joL)(G+joC)V .. (1.3)
Differentiating equation (1.2) w.r.t. °x’
d’l _ dv
a3 (G+jeC) oo
_ dv . .
Substituting the value of'd_x' in the above equation
d?1 o .
a}i = (R+joL)(G+jaC)1 .. {(1.4)

But propagation constant is given by

y = VR +joL)(G+jeC) =[ZYi13

EMTL



1.6  Transmission Lines and Waveguides

Substituting the value of y in equation (1.3) and (1.4),

d*V
then T = Y2V

The solutions of the above linear differential equations are
V = Ae+B e ¥
I = Cer+De ¥
where A,lB, C and D are arbitrary constants.

Differentiating the equation (1.5), w.r.t. °x’

% = Aye*—Bye ™
dav
But Tl T V4

IZ = Aye*-Bye ¥

Similarly, differentiating the equation (1.6) w.r.t. ‘x’

dl
el — Cye*—Dye ¥
dl
VY = Cye*-Dye ¥

CNZY VZY* _pyZy o V25

V = C\/g e\lﬁl"—D‘\/—%j e—ﬁx

Since the distance x is measured from the receiving end of the transmission line,

x=0, 2 Led
vV = Vi
Vi = R Zp 114

EMIL

... (1.5)
... (1.6)

ANZY NPYx _pozy VP2 [y =AY ]

(L)

oo LR



where I is the current in the receiving end of line

Vy, is the voltage across the receiving end of the lines

Zy, is the impedance of receiving end

Substituting this condition in equations (1.5), (1.6), (1.7) and (1.8).

Vg = A+B
I, = C+D
Y Y
RN BN
Z Z
To solve these equations,
Z ] Y
Let x = \/; and o b
Tl I = =R
K€en lp = X —x
i
= - (A-B)
But [ WhH-1)
]
C+D = = A=
Cx+ Dx “=(ATH
A-B = Cx+Dx
Similarly, equation (1.12) becomes,
\IR = Cx—Dx
But Vp = A+B
A+B = Cx-Dx
A-B = Cx+Dx
Adding the equations (1.13) and (1.14),
2A = 2Cx
A= Cx
Similarly subtracting the equations (1.13) and (1.14),
2B = —2xDx
B = —-Dx

EMTL
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.. (1.9)
... (1.10)

. (L11)

s (TN

R ]

.. (1.14)
. (113)



Substituting the values of A and B in the following equations.

Adding the equations (1.15) and (1.16),

Subtracting the equations (1.15) and (1.

il o 17)

Vg = A+B
= Cx—Dx
But I, = C+D
Ipx = Cx+Dx
Vg = Cx—Dx
2Cx = Igx+ Vi
g Vx
€ AR
I Vi ¥
W el
16),
2RE = ey
Iz Ve
D=y
Ir Vi Y
D=3 -2\z
But A = Cx
Ix Vi
R i
Vi Ir %
A=5 +9\/¥
B = —Dx
1 V
INNE
5 2 Y

The characteristic impedance is defined as

EMTL
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a]

o

\/Z

R +jmL
G+joC
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... (1.15)
... (1.16)

—
N2

... {1.18)

.. (1.19)

... (1.20)

1
e (12D
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Substituting the value of Z in equations (1.19), (1.20), (1.17) and (1.18),

Vi R Z
AT TN Y
-\‘TR ‘V?R
A= ?JFE—Z_RZU
VR( Z, 7 |
A= Ll e ZRJ | w1293
Vi Iz £
B =73 ‘2\ﬁ
—
7= Ggrds
' VR{ Z’o]
B=—|1-=2 . (1.23)
| g ZR |
IR Vg Y
Bl o0 2 ‘\/;
s 27, [ Vr=1rZy]
I g |
C = ER {1+~—R} | . (1.24)
Z
T T R
D =SS 7
IR ¥RZR
r==Jt e
J I [ ZRJ
tBi="37 | T+ v K125
D=3 (147 (1.25)

Substituting the values of A, B, C and D in equations (1.5) and (1.6), the solutions of the
differential equations are

Vg Z, NZY Ve [ Zy) AT
V= [l—!—zﬁje + 5 L]—ZRJ e i (1.26)
IR Zr ) \Z¥x IR( LR ) \Z¥x
- 2(1._20)@ r3 (15 .. (127)
V = Ei—(ifﬁjeﬁx+{l—&]e_ﬁx1 .-- (1.28)
2 | Zo Zy i '
117
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Z ; Z :
g ]—RMHA’E]B\EM[FZ—“]Q‘\’H?‘} .. (1.29)

2 Z, } -

After simplification,

V_VR\F__L__\[_Y em U—ﬁx

2 > 7, zzR

[= B VxR B R T 23R T
2 2

(8]

\f_Yx_re 7Y% ) (e\!'ﬁx_e—\fﬁx
vo 2 Jﬂﬁzok 2

'\;E?x_'_—@x Vv - VR
I=IR[€ 29 +Z_DR(E\IH’J:_€—'JE’I) ]:._.IR:_}

Then equations can be written in terms of hyperbolic functions.

|V = Vgcosh\ZY x+I3 Z, sinh\ZY x .. (1.30)
;

| 1= IycoshZY x + Z—R sinh\JZY x .. (13D)
| _

o {
These are the equations for voltage and current of a transmission line at any distance "x’
from the receiving end of transmission line.

The equations for voltage and current at the sending send of a transmission line of length
‘f” are given by

Vg = VycoshyZY ] + Z_R Z,sinh\/ZY [ { IR:EJ
Iy = Iycosh\ZY ] + sinh\ZY [+ Ve=1g Z;]
O
i Zy ]
Vg = Vgy| cos\ ZY f+z— sinhy ZY / | sk b3 )
L R J
I L T ZR : _L 177
Ig = Ig | cosy ZY [ + 7. sinhyf ZY [ | s 1:33)
L 0 |

1.4. WAVELENGTH AND VELOCITY OF PROPAGATION
The propagation constant (y) and characteristic impedance (Z,) are called secondary

constants of a transmission line.

Propagation constant is usually a complex quantity.
¥ == g He

4,

EMTL
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where o 1s the attenuation constant.

B is the phase shift.

Yy = NZY
where Z = R+joL
¥ = Gtial

The characteristic impedance of the transmission line is also a complex quantity.

,‘Z
ZO e =F

7 = R+;mL
0 - G+jeC

Propagation constant is

a+if
Sguaring on both sides,
(o +7B)?
~ B+ 20 b
Equating rea! par.-,
— B2
il
Equating imaginary parts,
2o

Squaring on both sides,

4 02 B2 -

o2 B2 =

= a+if

V (R +joL) (G +/oC)

\/ RG - ®2LC +ja(LG +RC)

RG - 02LC +jo(LG +RC)
RG - w2LC + /o (LG + RC)

RG - wlC
B%+RG - w2LC

® (LG + RC)

®2 (LG + RC)2

'!2
‘-4- (LG + RC)2

Substituting the value of o2 [eqn. (1.37)] in the above equation,

2

(B2 +RG-02LC) P2 = - (LG+RCY

B4+ B2 (RG - 0?LC) — - (LG +RO)2

0

The solution of the quadratic equation is

119

— (RG - 02LC) £ (RG - 0?LCY + 02 (LG + RC)?

B_

EMTL

2

. (1.34)

.. (1.35)
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By neglecting the negative values,

®2LC —RG + 1 (RG — 02LCY + ? (LG + RC)?
g = -\/ v ( ’ ) ( Y 13w

a? = B2+RG-0?LC e LIS T
Substituting the value of 3 [eqn. (1.38)] in the above equation,
®2LC —RG +v/ (RG - ©2LC) + @2 (LG + RC)

ol = > +RG-w2lLC
_ RG-02LC+\ (RG-02LCY + 2 (LG + RC)?
- 2
RG — 02LC +1/ (RG - @2LCR + 0? (LG +RCY -
o= 5 ... (1.39)
For a perfect transmission line R =0 and G =0,
B2 = w?LC
B=oyLC [only positive value]
Velocity ;
The velocity of propagation is given by, .
y o= A 4
A
= 2 f .
@ 2n
¥ = B {.‘B—?Landm—Zﬂf]
Substituting the value of B=w / LC
®
o
o\ LC

1
YT JIC

This is the velocity of propagation for an ideal line.

Wavelength :

The distance travelled by the wave along the line while the phase angle is changing
through 27 radians is called wavelength.

Bl‘ = 2n
27 y
A= B or A= } 120

EMTL
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1.5. INPUT IMPEDANCE AND TRANSFER IMPEDANCE OF TRANSMISSION LINE
Input impedance :

The equations for voltage and current at the sending end of a transmission line of length
*I” are given by

7
Vg = VR(cosh\/ ZY I + 5> sinh\[ZY / ) .. (1.32)
R
ZR
2z e 5 % [cosh\/ ZY 1+ sinh\[ZY 1 . (1.33)
0

The input impedance of the transmission line is,

z. = ¥
5 [S

&
Vi [cosh VZY I + >~ sinh\[ZY zj
R
,
1 (cosh NZY 145 sinh\[ZY !J
0

z
7 1 Ve (cosh\/ ZY I + 5 sish\[ZY 1}
R

7z
IR(cosh x} ZY ;’+*Z‘E sinhy/ ZY 1]
0

Zy(Zg cosh\ ZY I+ ZgsinhA[ZY 1) -
Z 1 N Ea "
3 (Zgcoshy| ZY 1+ Zg sinhn[ ZY 1) (1.40)

Let | ZY = Y

The input impedance of the line is
| Zp coshyl+Z,sinhy!
| Zycoshyl+Zp sinhy]

Zs = Z,

-

[ Zg+Zytanhy!
. Zy+ Zg tanhyl

or ZS = ZG

In a different form, the equations for voltage and current at transmitting end of a line is
given by equations (1.28) and (1.29),

% Z s Z N5
Vsz“nﬂUHj{U}e Z“r"!-[(l—z_nje_ ZYE:[ o {128)

e \ ‘R \ R

IR [ ( Zr VZYi ( g ) _ 2%
IS:E[L1+Z_QJE +!\\1_E;Je :J121 ... (1.29)

EMTL
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VR ZR+ZO A ZR m:’
or Vg = 5 l:[ e )e + ZR
Lo 2 I_R[ Zid Zo NIV ZO'ZR\E—\}.ZW ﬁ{
s 2 L0 Zo ‘ Zg J |
h Zy+Zg Ln—1 ]
pr __R g M NZY! | R _Z0 | —f7ZY!
o T LY J[ Z‘R JI: ’ T[Z'RJFZOJE J - (14D
I = I_E Z l- mf (Z —NZY ! (1 42)
S 2 Z(a ‘\ZR+Z TR

The input impedance of the transmission line is given by,

- AT
Z.‘r!_'_[ 3 ZY !

Vs e [+ Vg =1g Zg] (1.43)
= —==7 V=1 .. (143
. Is ? eﬁ?;_(ZR Zo )e-wﬁ?f RORTR
\ Zr + Zg
Let st 2Y
The input impedance of the transmission line is,
ef! + “—ZR_“ZD e_l"‘r 4
Zrp*+Z
Zs = Zy v L sanar . (1.44)
AT (B 2

If the line is terminated with its characteristic impedance ie., Zg = Z,, then the input

impedance becomes equal to its characteristic impedance.
Zs = Zy
The input impedance of an infinite line is determined by letting / — co.
Lg = Z,

It is found that a line of finite length, terminated with its characteristic impedance, appears
to the transmitting end generator as an infinite line. A finite line terminated with Z, and an

infinite line are same by measurements at the source.

Zg~2Z,
If K = , then
vl —vi 1
. e!" +Ke
Zo = Z .. (145
S 0 { T (1.45)

122
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Transfer impedance :

Transfer impedance is used to determine the current at the receiving end if voltage at
transmitting end is known. Transfer impedance of a transmission line is defined as the ratio of
voltage at the sending end (transmitted voltage) to the current at the receiving end (received
current).

L = 5
T I

Equation (1.41) becomes

Vi (Zg + Zy) ("

U~ —= +Ke ')
R
I (T O -
Vg = =5 A8 +Ke ™) [ Vg =g Zg]
\Y Zo+Z
R E
_ Lo (gl ERTE Ly
2 \\ ZR+ZU

Bt v i
i} [_%jeyf R [ng_o)e_ﬂ

v —vi %f ~vl
g +e griiiep
- ZR["‘""E—]*ZU(“z—]

= Zgcoshyl + Z,smhy!
I YJ_F =3 evf__e—yf
L g___;_ =coshy/ and A - sinh y/ }

Zy = Zgcoshyl+Z,sinhy!

1.6. LINE DISTORTION

Signal (e.g., voice) transmitted over a transmission line is normally complex and consists
of many frequency components. Such voice voltage will not have all frequencies transmitted
with equal attenuation and equal time delay, the received waveform will not be identical with
the input waveform at the sending end. This variation is known as distortion. There are two
types of line distortions. They are frequency distortion and delay distortion,

Frequency Distortion : A complex (voice) voltage transmitted on a transmission line will
not be attenuated equally and the received waveform will not be identical with the input
waveform at the transmitting end. This variation is known as frequency distortion.

The attenuation constant is given by 123

EMTL



112

EMTL



DEPT.OF ECE

Consider a T section of transmission line of length dx. Let V + dV be the voltage and
I + d1 be the current at one end of T section. Let V be the voltage and I be the current at the
other end of this section.

The series impedance of a small section dx 1s (R + jL®) dx. The shunt admittance of this
section dx is (G + jCw) dx.

The voltage drop across the series impedance of T sections i.e., the potential difference
between the two ends of T section is

V+dV-V = I(R+jol)dx
dV = 1(R+jol)dx
dv

= = I(R:tjoL) (L)
dv |
== 17

The current difference between the two ends of T section is due to the voltage drop across
the shunt admittance.

[+dl-1 = V(G+joC)dx
dl = V(G+joC)dx
dl :
e V(G +joC) s CE2)
dl
AN VY
Differentiating equation (1.1) w.r.t. *x’,
d*V _ dl
ae = ®+jel) o

dl
Substituting the value ofa in the above equation

d?V , o
e = (R+joL)(G+joC)V .. (1.3)
Differentiating equation (1.2) w.r.t. °x’
d’l _ dv
a3 (G+jeC) oo
_ dv . .
Substituting the value of'd_x' in the above equation
d?1 o .
a}i = (R+joL)(G+jaC)1 .. {(1.4)

But propagation constant is given by

y = VR +joL)(G+jeC) =[ZYi13

EMTL
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Substituting the value of y in equation (1.3) and (1.4),

d*V
then T = Y2V

The solutions of the above linear differential equations are
V = Ae+B e ¥ ... (1.5)
Il = Cer+De¥™ —E
where A,lB, C and D are arbitrary constants.

Differentiating the equation (1.5), w.r.t. °x’

% = Aye*—B¥e ¥
av
But .~ = IZ
1Z SVAper=Bie ™
= ANZY NE¥* _pyZy VIV [y =AY ]
X ; Y
I = A\/; NZYx _p 7 N2 (L)
Similarly, differentiating the equation (1.6) w.r.t. ‘x’
dl
FEL Cye*—Dye ¥
dl
VY = Cye*-Dye ¥

CNZY VZY* _pyZy o V25

Z Z
V = C\/; e\ﬁ’"—D\[; e VZY x s (1 8)

Since the distance x is measured from the receiving end of the transmission line,

x=0, 2 Led
V = v,
Vg = R Zz

114
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where Iy is the current in the receiving end of line

Vy is the voltage across the receiving end of the lines

Z. is the impedance of receiving end

Substituting this condition in equations (1.5), (1.6), (1.7) and (1.8).

Vg = A+B
I = C+D
¥
7 Z
To solve these equations,
Z ] i
Let x = \/; and = 7
A B
Then I = iy |
i
= - (A-B)
Bt I, = SESE)
1
C+D = ¢ (A=B)
Cx+Dx = A-B
A= B="{lxstTw
Similarly, equation (1.12) becomes,
\;R == CX—DX
But V, = A+B
A+B = Cx-Dx
A-B = Cx+Dx
Adding the equations (1.13) and (1.14),
28, = JCx
A = Cx
Similarly subtracting the equations (1.13) and (1.14),
2B = —2xDx
B = —Dx

EMTL

.. (1.9)
.. (1.10)

.. (L.1D)

s T

v (133

. (1.14)
. (1.13)
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Substituting the values of A and B in the following equations.

Adding the equations (1.15) and (1.16),

Subtracting the equations (1.15) and (1.

il o 17)

Vg = A+B
= Cx—Dx
But I, = C+D
Ipx = Cx+Dx
Vg = Cx—Dx
2Cx = Igx+ Vi
g Vx
€ AR
I Vi ¥
W el
16),
2RE = ey
Iz Ve
D=y
Ir Vi Y
D=3 -2\z
But A = Cx
Ix Vi
R i
Vi Ir %
A=5 +9\/¥
B = —Dx
1 V
INNE
5 2 Y

The characteristic impedance is defined as

EMTL

Z

a]

o

\/Z

R +jmL
G+joC

DEPT.OF ECE

... (1.15)
... (1.16)

—
N2

... {1.18)

.. (1.19)

... (1.20)

1
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Substituting the value of Z in equations (1.19), (1.20), (1.17) and (1.18),

Vi R Z
AT TN Y
-\‘TR ‘V?R
A= ?JFE—Z_RZU
VR( Z, 7 |
A= Ll e ZRJ | w1293
Vi Iz £
B =73 ‘2\ﬁ
—
7= Ggrds
' VR{ Z’o]
B=—|1-=2 . (1.23)
| g ZR |
IR Vg Y
Bl o0 2 ‘\/;
s 27, [ Vr=1rZy]
I g |
C = ER {1+~—R} | . (1.24)
Z
T T R
D =SS 7
IR ¥RZR
r==Jt e
J I [ ZRJ
tBi="37 | T+ v K125
D=3 (147 (1.25)

Substituting the values of A, B, C and D in equations (1.5) and (1.6), the solutions of the
differential equations are

Vg Z, NZY Ve [ Zy) AT
V= [l—!—zﬁje + 5 L]—ZRJ e i (1.26)
IR Zr ) \Z¥x IR( LR ) \Z¥x
- 2(1._20)@ r3 (15 .. (127)
V = Ei—(ifﬁjeﬁx+{l—&]e_ﬁx1 .-- (1.28)
2 | Zo Zy i '
117
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I Z . z ,
I = ERMHﬂe\fZ_‘fu@_Z—“]e-mﬂ eus (25
o/ o
After simplification,
V_VR\F__L__\[_Y em_xu U—ﬁx
) 2 A
. SN/ IRZR ﬁ NGE IRZR N
2 2 Z

(8]

\f_Yx_re 7Y% ) (e\!'ﬁx_e—\fﬁx
VRL 2 J+IRZO(\ 7

'\;E?x_'_—@x V - VR
I=IR[€ 29 +Z_DR(E\IH’J:_€—'JE’I) ]:._.IR:_}

Then equations can be written in terms of hyperbolic functions.

|V = Vgcosh\ZY x+I3 Z, sinh\ZY x .. (1.30)
;

| 1= IycoshZY x + Z—R sinh\JZY x .. (13D)
| _

——— {
These are the equations for voltage and current of a transmission line at any distance "x’
from the receiving end of transmission line.

The equations for voltage and current at the sending send of a transmission line of length
‘f” are given by

Vg = VycoshyZY ] + Ry Z,sinh\/ZY [ { IR:EJ
Ig = IgcoshZY ] + = Sinh\ZY ! [+ Ve=1g Z;]
D
i Zy )
Vg = Vgy| cos\ ZY f+z— sinhy ZY / | sk b3 )
L R J
e = L | cos\[ZV 1 + 22 sinhn[ZV 1 | (1.33)
s R T ' | sepliLs

1.4. WAVELENGTH AND VELOCITY OF PROPAGATION
The propagation constant (y) and characteristic impedance (Z,) are called secondary

constants of a transmission line.

Propagation constant is usually a complex quantity.
¥ == g He

4,
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where o 1s the attenuation constant.
B is the phase shift.
y = Jzy
where Z = R+joL
¥ = Gtial

The characteristic impedance of the transmission line is also a complex quantity.

,‘Z
ZO e =F

Zy = \/%{f@ v (158
Propagation constant is a+iP3
= \ (R+joL) (G +jaC)
o+if = 3/ RG-w2LC + (LG +RC) ... (1.35)

Sguaring on both sides,
(a+jBP = RG-aLC +jo(LG +RC)
-B2+2j0B = RG-wlLC+jo(LG+RC) ... (1.36)
Equating rea! par.-,
—pB2 = RG-w?lC
a? = B2+RG-w2LC .. (1.37)
Equating imaginary parts,
2opB = o (LG+RC)
Squaring on both sides,

402B? ~ @2 (LG +RC)

*}2
o2 B = ‘—4- (LG + RC)?

Substituting the value of o2 [eqn. (1.37)] in the above equation,
3

(B2 +RG-02LC) P2 = - (LG+RCY

R4 + B2 (RG - 02LC) - % (LG+RC2 = 0

The solution of the quadratic equation is

g - —(RG—02LC) £\ (RG-o?LC)? + 02 (LG +RCE,
2
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By neglecting the negative values,

®2LC —RG +/ (RG — @2LCR + @2 (LG + RC)?2
B = 5 ... (1.38)

a? = B2+RG-0?LC e LIS T
Substituting the value of 3 [eqn. (1.38)] in the above equation,
®2LC —RG +v/ (RG - ©2LC) + @2 (LG + RC)

ol = > +RG-w2lLC
_ RG-02LC+\ (RG-02LCY + 2 (LG + RC)?
- 2
RG - 92LC +/ (RG - @?LC? + 0? (LG + RCPE
..az\/ VRG-wICP+a (G+ROE
For a perfect transmission line R =0 and G =0,
B2 = w?LC
B=oyLC [only positive value]
Velocity ;
The velocity of propagation is given by, .
y o= A 4
A
= 2 f .
_ e 1 _
¥ = B {.‘B—?Landm—Zﬂf]
Substituting the value of B=w / LC
®
o
o\ LC

1
YT JIC

This is the velocity of propagation for an ideal line.

Wavelength :

The distance travelled by the wave along the line while the phase angle is changing
through 27 radians is called wavelength.

Bl‘ = 2n
2n . ¥
A= B or l—f 120
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1.5. INPUT IMPEDANCE AND TRANSFER IMPEDANCE OF TRANSMISSION LINE
Input impedance :

The equations for voltage and current at the sending end of a transmission line of length
*I” are given by

7
Vg = VR(cosh\/ ZY I + 5> sinh\[ZY / ) .. (1.32)
R
‘ZR
2z e 5 % [cosh\/ ZY 1+ sinh\[ZY 1 ] . (1.33)
0

The input impedance of the transmission line is,

z. = ¥
5 [S

&
Vi [cosh VZY I + >~ sinh\[ZY zj
R
,
1 (cosh NZY 145 sinh\[ZY !J
0

z
7 1 Ve (cosh\/ ZY I + 5 sish\[ZY 1}
R

7z
IR(cosh x} ZY ;’+*Z‘E sinhy/ ZY 1]
0

% Zo(Zg cosh\ ZY I+ Z,sinh\| ZY 1) 40
S (Zgcoshy| ZY 1+ Zg sinhn[ ZY 1) = (BAD)

Let | ZY = Y

The input impedance of the line is
| Zp coshyl+Z,sinhy!
| Zycoshyl+Zp sinhy]

Zs = Z,

-

[ Zg+Zytanhy!
. Zy+ Zg tanhyl

or ZS = ZG

In a different form, the equations for voltage and current at transmitting end of a line is
given by equations (1.28) and (1.29),

% Z s Z N5
Vsz“nﬂUHj{U}e Z”"!-I(l—z—:ije_ ZYE:[ o {128)

A \ R \

IR [ ( Zr VZYi ( g ) _ 2%
IS:E[L1+Z_QJE +!\\1_E;Je :J121 ... (1.29)
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\% Lol Zo—Z4\ _
&F Vg = E_R[[_&Z;{_U) NZY1 +(J§ZR_j€ Nzyi! J

I = I_R( Zr*Zo NI ZO_ZR\E—\}ZX’J 1
s T 2L Z, dN |

V ™ Z+Z Lo wll] 1
ae Vg = [“Z—RJ['}{TN e {MJE“ .
o T2t 24 Zp
16 D = Tl

The input impedance of the transmission line is given by,

- AT
Z\!+[_____ 3 ZY !

Vs - [+ Vg =g Zg] (1.43)
P o= Y = B e W M A B
3 Is ? NETL (ZR Zo G ALZY !
Let st 2Y
The input impedance of the transmission line is,
E'Yf -+ = _.ZD _T‘r f
Zp+Zy
Zs = Zy v L sanar .. (1.44)
AT (B 2

If the line is terminated with its characteristic impedance ie., Zg = Z,, then the input

impedance becomes equal to its characteristic impedance.
Zs = Zy
The input impedance of an infinite line is determined by letting / — co.
Lg = Z,

It is found that a line of finite length, terminated with its characteristic impedance, appears
to the transmitting end generator as an infinite line. A finite line terminated with Z, and an

infinite line are same by measurements at the source.

ZR_ZO

If K = 57—, then
vl —vi 1
. e!" +Ke
Zo = Z .. (145
s 0{ T (1.45)

122
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Transfer impedance :

Transfer impedance is used to determine the current at the receiving end if voltage at
transmitting end is known. Transfer impedance of a transmission line is defined as the ratio of
voltage at the sending end (transmitted voltage) to the current at the receiving end (received
current).

L = 5
T I

Equation (1.41) becomes

Vi (Zg + Zy) ("

Vs = 757 Pe )
R
Ig (Zp+Zy) - |

Vg = =5 A8 +Ke ™) [ Vg =g Zg]
\Y Z./47
R E

_ Lo (gl ERTE Ly

2 k Z¥{+HZH

e Lo—Z
= ["%je?f e [MB.E—OJQ—TI

vl -y %f -yl
g+ e’ —e
ZR[ 2 ]”0( 2 )

= Zgcoshyl + Z,smhy!

el 4et! s Y
L S =coshy/ and A - sinh y/

Zy = Zgcoshyl+Z,sinhy!

1.6. LINE DISTORTION

Signal (e.g., voice) transmitted over a transmission line is normally complex and consists
of many frequency components. Such voice voltage will not have all frequencies transmitted
with equal attenuation and equal time delay, the received waveform will not be identical with
the input waveform at the sending end. This variation is known as distortion. There are two
types of line distortions. They are frequency distortion and delay distortion,

Frequency Distortion : A complex (voice) voltage transmitted on a transmission line will
not be attenuated equally and the received waveform will not be identical with the input
waveform at the transmitting end. This variation is known as frequency distortion.

The attenuation constant is given by 123
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Propagation constant y = '\f (R+jol) (G +/jnl)

= \/L[—Pf+jm)c(g+jm)

= LC \/(%ﬂmjf%w}]

kY

R _G&
But L. = F
el £ S
2LC - RG + RG + w?
Then B = _\/m LC RGZRG WLC
_ 20°LC
9
ig= Tninive
Velocity of propagation is y o= %
1

TN

This is the same velocity for all frequencies, thus eliminating delay distortion,

Attenuation factor

L _\/ RG — @2LC +1/(RG = 0?LC)? + &? (LG + CR)?

2

To make « is independent of frequency, the term (RG — @2LC)* + w? (LG + CR)? is
forced to be equal to (RG + 0?LC)2.

(LG-CR® = 0
LG = CR
L _R
¢ "G

This will make o and the velocity independent of frequency simultaneously. To achieve
this condition, it requires a very large value of L, since G is small.

-_— 2 7 2
The attenuation factor o = \/ RG - 0’LC +\2/(RG + 02LC)
_ RG-2LC+RG+ e2lC
- 2
125
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a = \JRG
It is independent of frequency, thus eliminating frequency distortion on the line.
The characteristic impedance Z, is given by
7 = R+joL
o = \} G+jaC

/I Lk%+jm

x . %
| — '-1"
/\/ C,\C*U(u}_r

-

But T = for distortionless line.

a \E

t is purely real and is independent of frequency.

o LN

1.8. TELEPHONE CABLE &

In the telephone cable the wires are insulated with paper and twisted in pairs. This
construction results in negligible values of inductance and conductance. Therefore Lo << R
and G << Caw.

4= R4jol.s B
B 5 G ik R joC
Propagation constant YA Y

But v = a+jp

Equating real and imaginary parts o = ’\/ -

oRC
= N .
P NV 2

126
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. ; & LLJ
Velocity of propagation v = , = i s RO
B ,‘ ORC
‘ Z
The characteristic impedance Z, = = = — L-45°
P o =\ Y \f ;ca( '\ mc

It is found that the propagation constant o and velocity of propagation v are functions of
frequency. Thus, the higher frequencies are attenuated more and travel faster than the lower
frequencies resulting in considerable frequency and delay distortion.

1.9. LOADING OF LINES

It is necessary to increase L/C ratio to achieve distortionless condition in a transmission
line. This can be done by increasing the inductance of a transmission line. Increasing
inductance by inserting inductances in series with line is termed as leading and such lines are
called loaded lines. The lumped inductors, known as loading coils are placed at suitable
intervals along the transmission line to increase the effective distributed inductance.

The effect of loading can be realised by comparing the unloading of a transmission line in
the attenuation Vs frequency graph. Fig.1.5 shows that the loaded line offers a low
attenuation when compared to the unloaded line only for limited range of frequencies.

The important aspect of loading coil design is that saturation and siray fields should be
avoided. It should have a low resistance and should be in small size. In general toroidal cores
are used for loading coils.

Types of Loading

The open wire lines have more inductance of their own and so have much less distortion
than cable. Therefore, the loading practice is not applicable to open wires but 1t 1s restricted to
cables only. There are three types of loading in practics. They are

(@) Lumped loading
(b) Continuous loading
(¢} Patch loading

(a) Lumped loading : The inductance of a transmission line can be increased by the
introduction of loading coil at uniform intervals. This is called lumped loading. It acis as a
low pass filter. So, it is applicable only for a limited range of frequency. The loading coils
have an internal resistance R thus, increasing the total effective inductance increases R.
Further hysteresis and eddy current losses which occur in the loading coils resulting in further
apparent increase in R. Therefore, there is a practical limitation on the value of inductance
that can be increased for the reduction of attenuation. Thus the loading coil should be

carefully designed so that it will not introduce any distortion.
127
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Unloaded

| /[ ]

— Lumped loaded

' /J___ Continuously loaded
; i
| .

>

(o)

Attenuation

Frequency (/)

Fig. 1.5, Comparison of loaded and unloaded cable characteristics

(b) Continuous loading : A type of iron or some other magnetic material is wound on the
transmission line (cable) to increase the permeability of the surrounding medium and thereby
increase the inductance. It is a quite expensive method. Further eddy current and hysteresis
losses in the magnetic material increases the primary constant R. Therefore, continuous
loading is used only on ocean cables where lumped loading is difficult. The advantage of
continuous loading over lumped loading is that attenuation factor ¢ increases uniformly with
increase in frequency.

(¢) Pateh loading : 1t employs sections of continuously loaded cable separated by sections
of unloaded cable. The typical length for the section is normally a quarter kilometer. In this
method the advantage of continuous loading is obtained and the cost is reduced considerably.

1.9.1. Inductance Loading of Telephone Cables

Distortionless line with distributed parameters is used to avoid the frequency and delay

distortion experienced on telephone cables. It is necessary to increase the L/C to achieve
; , o de o : ;
distortioniess condition ~ = G- Heaviside suggested that the inductance be increased and
B

Pupin suggested that this increase in the inductance by lumped inductors spaced at intervals
along the line. This use of inductance is called loading the line. The distributed loading is
obtained by winding the cable with a high permeability steel tape such as permalloy in some
submarine cables.

Consider an uniformly loaded cable with G = 0. Then,

Z = R+joL
¥ = §e [+~ G=0]
|
e s | (Lo )
Z = \f R4+ (Lw)? i tan—lt\ RL j 128
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Propagation constant 7y

Il

- Y
If 0
cos 6

For small angle,
sin ©
so that cos 6
Similarly, sin 6
Propagation constant v

-

EMTL

r2 A

zofgpyrde——
Lo

JR2+@mV§

ZY

] =
— tan b

(

\

©

T
Ci2

oCv/ RZ+ (Lw)?

Lo

Ttdn b

\/\/ RZ+(La)?

(0C) (Lw)

3\

|

/

DEPT.OF ECE

I

tanO~6
R
2 Lo

/S

1

(2 L. R
sing 5= T )
6

o\ LC (cos® +J sin 6)

T (2 )

R~/ L
RATC. oo TE

2Le 7
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R C
=S = +joy LC
2 L ™/

. Attenuation constant o =

g n|x

A e

@

Phase-shift B =

Velocity of propagation v =

Tt is noted that if G = 0 and Lw >> R, the attenuation and velocity are both independent of
frequency and the loaded cable will be distortionless. Aftenuation may be reduced by
increasing L. Continuous (uniform) loading is expensive and achieves only a small increase
in L per unit length. Lumped loading is preferred for cables.

Campbell’s Equation

An analysis for the performance of a line loaded at uniform intervals can be obtained by
considering a symmetrical section of line from the centre of one loading coil to the centre of
the next coil. The section of line may be replaced with an equivalent T section having
symmetrical series arms as shown in Fig.1.6. The series arm of T section including loading
coil is given by

Zy

-
r)

o] N

Z,
+3 {From the fig.]

pd,
i w ; }
where = is the series arm of T section.

2
/ Loading coils \

] S R ANNA/ G- - %
i . Z Z Z. s
| 2 2 2 2

-------

Fig. 1.6. Equivalent T section for part of a line between two lumped loading coils

4yt
7" Z v
7 —,;]- = +Zotanhj;
2 2 2 130

where [ is the distance between two loading coils.
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The shunt Z, arm of the equivalent T section is

ZO
7. =
2 sinh y/
For loaded T section
! <!
shiph = § oo
cOSRY 174
} Z vl
il /4
) > + Z, tanh 2
= 14+ Z
sinh y/
oyl coshyl=1
But tanhz e
Substituting this value in above eguation
Z, P coshy/—1
st 1 8 2 ©  sinhyl
cocoshyl = 1 + .
sinh v/
Zﬁ' -
5 sinhyl + Z (coshvi—1)
— l =+ ZG
ZC =
1 oy sinhy/ + coshyl — |
Z, _ _
cosh 1 & 5 Z sinh y/ + cosh v/
=" 4]

This equation 1s called as Campbell’s equation and it is used to determine th: value of ¥’
of a line section consisting of partially lumped and partially distributed elements. For a cable

Z, is capacitance and the cable capacitance and lumped inductances appear similar to the
circuit of the low pass filter. It is found that for frequencies below cutoff, the attenuation is
reduced, but the cut-off attenuation is increased (as a result of filter action). In practice, pure
distortionless line is not obtained by loading, because R and L are to some extent functions of
frequency. Eddy current losses are more in these coils. However, there is a major
improvement in the loaded cable over the unloaded cable for a reasonable frequency range.

1.10. OPEN CIRCUITED AND SHORT CIRCUITED LINES

The expressions for voltage and current at the sending end of a transmission line of length
‘I’ are given by 131
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Z

Vi = W [cosh NZY I+ sinh\[ZY 1]
R

Zp 1

I, = Iy cosh\/ZYH-Z—sinh\/ZYlJ
o

The input impedance of a transmission line is given by

By e

Vr cosh\/-_Y Z+—smh\/_Yl
I cosh\/—Y I+ smh\/— l

Vi Z, (Zg coshyl+Z; sinh yi)
IR Zg (Z, coshyl + Zy sinh yl)

ZR cosh ¥/ + Z_ sinh yl \ Vi '}
Z, cosh yl + Z sinh yl) R™Ip |
&

( Zy cosh yl + Z sinh yl j

Zs = L Z,, cosh yl + Zg sinh yl

If short circuited, the receiving end impedance is zero.
i.e., ZR =
( Z, sinh v/

AN Z,coshyl

5C

Short circuited impedance
&, = B tanh ¥l
If open circuited, the receiving end impedance is infinite.
L€ Iy = o
Input impedance of transmission line can be written as

— Sy

coshyl + z—' sinh v/
R

7y = 7,

ZD .
-ZI; cosh y/ + sinh v/

Applying Zg = 132
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_ > cosh v/
Then Z, = Z, |j_—‘ﬁsinh“,f.t'}
The open circuited impedance

Z,. = Z, cothyl

ac
By multiplying open circuited impedance and short circuited impedances
Zye L, = Z2tanhyl cothyl
= Z{JE

The characteristic impedance is given by

‘ZD pe \ ZDC ZSC

By dividing short circuited impedance by open circuited impedance.

4 Z, tanh vl

3¢ -

Z.  Z,cothyl

= tanZh y/

[Ze

tanh y/ = \;
/ ZUC

A0
vl = tanh™! 7

o

1.11. REFLECTION

When the load impedance is not equal to the characteristic impedance of transmission line,
reflection takes place.

The expressions for voltage and current on the transmission line are

s }i{f_(1+é\l“e@x \ ] _£\|F e—\fﬁx]
2 L‘\ Zy ) . 4R/
I = I—Rr-fl-rg-{-] NZYx o | J_E—E—{\J e—wif’_‘fx1
- LL ZD/’ K Zn) _i
v = | &t 7. LT 7. |
or = ZL 7€ A e ]
= I_R FZR""Z,D 7y ZR ZD _mx 133
=R % ]
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or

Vi (Zp+Zy) 7O
- B [ ()]
R R ]

IR (ZR+ZO) . ZR_ZO ’
1= 57— | e | z.7z, )"
‘R R [
[ - y=AZY]

If the transmission line is not terminated with the characteristic impedance Le., Zp £ 2,
(mismatch) the above expressions for voltage and current exist. It consists of two waves, one
is moving in the forward (positive x) direction which is called incident wave and the other is
moving in the opposite (negative x) direction which is called reflected ray. The term varying
with e represents a wave progressing from the sending end towards the receiving end and
the amplitude decreasing with increased distance. The term varying with e~ ¥ represents a
wave progressing from the receiving end towards the sending end, decreasing in amplitude
with increased distance.

If the transmission line is terminated with characteristic impedance i.e., Zy = Z, (properly
matched) then the voltage and current expressions are

Vo= Vger
I o IR et

The incident wave moves only in forward (positive x) direction. There is no reflected
wave in the opposite direction.

1.11.1. Reflection Coefficient

Reflection coefficient is defined as the ratio of the reflected voltage to the incident voltage
at the receiving end of the line.

Reflected voltage atload Y_E
Incident voltage at load ~ Vg

The equation for the voltage of a transmission line is

VR (‘ZR o+ ZD) [ : Z‘R £ Z’o ?
Vo= e | o | e e
27; Zp+

v W Za+2Z) V=7
=T 27, ¢ 2y

e
The first term (&) represents incident wave, whereas the second term (e~ ¥¥) represents the

reflected wave. The ratio of amplitude of the reflected wave voltage to the amplitude of the
incident wave voltage is nothing but reflection coefficient.
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VR (ZR ! Zo)
_— 27, ~ Zp—Z;
Ve Zp +Z,) Zo+Z
24
27
Lo

K= ZR+ZO

It is also defined as in terms of the ratio of the reflected current to the incident current. But
it is negative.

Reflected currentat load  Ir
Incident current at load ~— g

~-K =

If the transmission line is terminated by its characteristic impedance (Zg = Z,), the

reflection coefficient becomes zero.

1.11.2. Reflection Factor and Reflection Loss
Consider a transmission line with a voltage source Vg and its impedance Z; and load
impedance Z, as shown in Fig.1.7. If Z, is not equal to Z,, reflection takes place. The power

delivered to the load is less than that with impedance matching. Reflection results in power
loss. This loss is known as reflection loss.

BEss i 1
1 H
i

|
O % ||
i |

{

L

r SN R

Fig. 1.7. Transmission line with voltage source Vg and impedance Z;

Image matching between the impedances Z; and Z, can be obtained by inserting an ideal
transformer and a phase shifting network between Z; and Z,. If I, and I, be the currents in the
primary and secondary of the transformer respectively, the current ratio of the transformer is

given by
I / Z,
L N Z,

Z, may be adjusted to that of Z, by choosing the proper transformation ratio and phase
angle. Z, is the image impedance of Z,. The current through the source is '
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Vs

L =27,

The current flow in the secondary of the transformer under image impedance matching is

- Z, \% Z, Vg “
L) = | — = — — = =
2 '\ 4, 2%, Z,  24[7,2Z,

- "I'he current in the load impedance Z, without image matching.
] =
2,+2,] |
The ratio of the current actually flowing in the load to that which might flow under
matched condition is known as reflection factor.

| | Vg
I |Z,+Z,]
TS | Vg |

12/ Z,Z, |
[

Z,+2Z,

The reflection factor indicates the change in current in the load due to reflection at the
mismatched junction.

The reflection loss is the reciprocal of the reflection factor in nepers or dB.

Reflection loss = In %

7t
= In 1_22__ nepers
i oy
7. )+ 7
= 20 log 5——‘—21—% dB

1.12. T AND 7 SECTIONS EQUIVALENT TO LINES
A T section is shown in Fig.1.8 with two ports 1, 1 and 2, 2.

Z4 Z5

1o 0 2

136
Fig. 1.8. T section network
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relmpedance measurements may be made at any port with the other port opened or shorted.
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be the impedance at port | when port 2 is open circuited.
be the impedance at port 1 when port 2 is short circuited.
be the impedance at port 2 when port 1 is open circuited.
be the impedance at port 2 when port 1 is short circuited.
= Bt
= Ly*Z,

Z, Z;
- LiE &7
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By solving these equations, the values of Z,, Z, and Z, are determined.

ZIOC“ZISC

ST
¥ 7,57

N, + 75 AT
Z,+7,

2
Z3

2
43
N [ Zy T Z3=2Z54]

Zaoc (Z1oc~Z15¢)

3 = £ Zyoc Eioe~Z150)

Taking the positive value,

Z3
Z,

= A Tl Loy i)

= Zyoc—Zs [~ Zyoc=2Z; +Z4]
= Zioc= \ Zaoc Zioc—Z50)

= Zyoc—Z3 [ Zyoc =Zy +Z4]

= Zyoc~ \ Zaoc ioc—Z150)
= Zioe=% Zooe Croe—Zis0)
= Zyoc =\ Zaoc Z 10— Z150)
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This means, more the current flows towards the surface of the conductor, it flows less towards the center,
which is known as the Skin Effect.

Inductance
Inan AC transmission line, the current flows sinusoidally. This current induces a magnetic field

perpendicular to the electric field, which also varies sinusoidally. This is well known as Faraday's law. The
fields are depicted in the following figure.

Electromagnetic Wave

"'\?L:*

2 Magnetic field
[ Eleotric field

This varying magnetic field induces some EMF into the eonductor. Now this induced voltage or EMF flows
in the opposite direction to the current flowing initially. This EMF flowing in the opposite direction is
equivalently shown by a parameter known as Induetanece, which is the property to oppose the shiftin
the current.

Itis denoted by "L". The unit of measurement is "Henry "
Conductance

There will be a leakage current between the transmission line and the ground, and also between the phase
conductors. This small amount of leakage current generally flows through the surface of the insulator.
Inverse of this leakage current is termed as Conductance. It is denoted by "G".

The flow of line current is associated with inductance and the voltage difference between the two points is
associated with capacitance. Inductance is associated with the magnetie field, while capacitance is
associated with the electric field.

Capacitance
The voltage difference between the Phase conductors gives rise to an electric field between the

conductors. The two conductors are just like parallel plates and the air in between them becomes
dielectric. This pattern gives rise to the capacitance effect between the conductors.
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Characteristic Impedance

If a uniform lossless transmission line is considered, for a wave travelling in one direction, the ratio of the
amplitudes of voltage and current along that line, which has no reflections, is called as Characteristic

impedance.
Itis denoted by Zg

[ voltage wave value

Zy =
current wave value

R+ jwL

Zy= I
0 VG+ij‘

For a lossless line, By = Vf %

Where [, & ' are the inductance and capacitance per unit lengths.

Impedance Matching

To achieve maximum power transfer to the load, impedance matching has to be done. To achieve this
impedance matching, the following conditions are to be met.

The resistance of the load should be equal to that of the source.
Rr = Rs
The reactance of the load should be equal to that of the source but opposite in sign.
Xi=—Xs
Which means, if the source is inductive, the load should be eapacitive and vice versa.

Reflection Co-efficient

The parameter that expresses the amount of reflected energy due to impedance mismatchina
transmission line is called as Reflection coefficient. It is indicated by prho.

It can be defined as "the ratio of reflected voltage to the incident voltage at the load terminals"”.

re flected voltage  V; .
- incident voltage Vi at load terminals

If the impedance between the device and the transmission line don't matech with each other, then the
energy gets reflected. The higher the energy gets reflected, the greater will be the value of preflection
coefficient.

Voltage Standing Wave Ratio VSWR
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The standing wave is formed when the incident wave gets reflected. The standing wave which is formed,
contains some voltage. The magnitude of standing waves can be measured in terms of standing wave
ratios.

The ratio of maximum voltage to the minimum voltage in a standing wave can be defined as Voltage
Standing Wave Ratio VSWR. It is denoted by "§".

S:M 1<8<oo
|th'a:-|

VSWR describes the voltage standing wave pattern that is present in the transmission line due to phase
addition and subtraction of the incident and reflected waves.

Hence, it can also be written as

The larger the impedance mismatch, the higher will be the amplitude of the standing wave. Therefore, if
the impedance is matched perfectly,

Vinaz : Vipin =1:1
Hence, the value for VSWR is unity, which means the transmission is perfect.
Efficiency of Transmission Lines

The efficiency of transmission lines is defined as the ratio of the output power to the input power.

Power delivered al receplion
r gent from the transmission end

% e f ficiency of transmission line n= 5— = 100

Voltage Regulation

Voltage regulation is defined as the change in the magnitude of the voltage between the sending and
receiving ends of the transmission line.

sending end voltage— receiving end volfage
? : g end voltage . 100

i ; —
% voltage regulation = F =y ¥

Losses due to Impedance Mismatch

The transmission line, if not terminated with a matched load, occurs inlosses. These losses are many
types such as attenuation loss, reflection loss, transmission loss, return loss, insertion loss, etc.

Attenuation Loss

The loss that occurs due to the absorption of the signal in the transmission line is termed as Attenuation
loss, which is represented as
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Attenuation loss(dB) = 10 log {%]
T

Where
* [F; =the input energy
* FE. =thereflected energy from the load to the input
e [, =the transmitted energy to the load

Reflection Loss

The loss that occurs due to the reflection of the signal due to impedance mismatch of the transmission line
is termed as Reflection loss, which is represented as

E.
> flection loss(dB) = 101 —_—
Re flection loss(dB) = 10 logyg [Ei— Er]

Where
* F; =the input energy
s E. =thereflected energy fromthe load

Transmission Loss

The loss that occurs while transmission through the transmission line is termed as T ransmission loss,
which is represented as

Transmission loss(dB) = 10 logip :g'—!"
¢

Where
* E; =the input energy

e F, =the transmitted energy
Return Loss

The measure of the power reflected by the transmission line is termed as Return loss, which is represented
as

Return loss(dB) = 10 logp %
.

Where
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e [; =the input energy

¢ E, =the reflected energy
Insertion Loss

The loss that occurs due to the enérgy transfer using a transmission line compared to energy transfer
without a transmission line is termed as Insertion loss, which is represented as

Insertion loss(dB) = 10 logy %
2

Where

* E, =the energy received by the load when directly connected to the source, without a transmission
line.

e FE, =the energy received by the load when the transmission line is ¢onnected between the load and
the source.

Stub Matching

If the load impedance mismatches the source impedance, a method called "Stub Matching” is sometimes
used to achieve matching.

The process of connecting the sections of open or shortecircuit lines called stubs in the shunt withi the
main line at some point or points, can be termed as Stub Matching.

At higher microwave frequencies, basically two. stub matching techniques are employed.
Single Stub Matching'

In Single stub matching, a:stub of certain fixed length is placed at some distance from the load. It is used
only for a fixed frequency, because for any change in frequency, the location of the stub has to be
changed, which is not done. This method is not suitable for coaxial lines.

Double Stub Matching

In double stud matching, two stubs of variable length are fixed at certain positions. As the'load changes,
only the lengths of the stubs are adjusted to achieve matching. This is widely used in laboratory practice
as a single frequency matching device.

The following figures show how the stub matchings look.
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v Short circuited

AN ' stub
& .

- {

v

Transmission Line

ol

Single Stub Matching

Transmission Line

2,22,

Double Stub Matching
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Transmission Lines — Smith Chart &
Impedance Matching (Intensive

Reading)

1 The Smith Chart
Transmission line calculations — such as the determination of input impedance using equation

(4.30) and the reflection coefficient or load impedance from equation (4.32) - often involves
tedious manipulation of complex numbers. This tedium can be alleviated using a graphical
method of solution. The best known and most widely used graphical chart is the Smith chart.
The Smith chart is a circular plot with a lot of interlaced circles on it. When used correctly,
impedance matching can be performed without any computation. The only effort required is
the reading and following of values along the circles.

The Smith chart is a polar plot of the complex reflection coefficient, or equivalently, a
graphical plot of normalized resistance and reactance functions in the reflection-coefficient
plane. To understand how the Smith chart for a lossless transmission line is constructed,
examine the voltage reflection coefficient of the load impedance defined by

IC= Vrefl :ZL _ZO

L

V. ZL n ZO re im

inc

=I'+,;T A (1)

where T'e and T, are the real and imaginary parts of the complex reflection coefficient T’ .
The characteristic impedance Zois often a constant and a real industry normalized value, such
as 50 A, 75 A, 100 A, and 600 A. We can then define the normalised load impedance by

2=21/Zy =R+ jX)/Zo =r+jx. (2)
With this simplification, we can rewrite the reflection coefficient formulain (1) as

Z, —Z, Z -1
. :(L o)/ OZZL . (3)

4 ye im (ZL +Zo)/Zo ZL+1

The inverse relation of (3) is

1+T )
z="""t= 14r R (4)
L _
R
or
(1+Te) +jTim
r+jx=____ (5)
(1_Fre)_jrim

Multiplying both the numerator and the denominator of (5) by the complex conjugate of the
denominator and separating the real and imaginary parts, we obtain
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1- 1—‘rez_ r im2
r= (6)
and (1-T,)2+T,2
202 : (7)
X=
(1 - l—;e )2 + 1ﬁimz
Equation (6) can be rearranged
as r? 1@
T T7e SN 8)
Y 4rQ 0l+rQ
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This equation is a relationship in the form of a parametric equation (x—a) 2+ (y —b)2=R?

i r
in the complex plane (I", I ) of acircle centred at the coordinates . : and having a

radiusof 1 . Different values of ryield circles of different radii withcentres at different

r+1

positions on the I'\.-axis. The following properties of the r-circles are noted:

e The centres of all r-circles lie on the I're-axis.

o The circle where there is no resistance (r = 0) is the largest. It is centred at the
origin andhas a radius of 1.

e The r-circles become progressively smaller as r increases from 0 to «, ending at
the(I're=1,T'im= 0) point for an open circuit.

o All the r-circles pass through the point (I're=1,im= 0).

See Figure 1 for further details.

r = O(short)

Figure 1: The r-circles in the complex plane (I're, I'im) .

Similarly, (7) can be rearranged as
Y 1?01

Tre—12+Tim— 0700 . (9)

T X1 oxl

Again, (9) is a parametric equation of the type (x —a) 2+ (y — b) 2= R ?in the complex plane
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Y 10_ 1
(I',T" ) of a circle centred at the coordinates 1, and having a radius of . Different

oo 0 X:X
) i
values of x yield circles of different radii with centres at different positions onthe I'e =1

line. The following properties of the x-circles are noted:

e The centres of all x-circles lie on the I're = 1 line; those for x > 0 (inductive
reactance) lieabove the I're -axis, and those for x < 0 lie below the I're -axis.
e The x= 0 circle becomes the I're-axis.
e The x-circles become progressively smaller 45 \x increases from 0 to o, ending at the

(I'e= 1, T'im= 0) point for an open circuit.
o All the x-circles pass through the point (I're= 1, Tim= 0).

See Figure 2 for further details.

147



DEPT.OF ECE

-
3

-

Figure 2: The x-circles in the complex plane (I're, T'im) .
To complete the Smith chart, the two circles' families are superimposed. The Smith chart
therefore becomes a chart of r- and x-circles in the (T'e, Tim) -plane for  T'<1.The
intersection of an r-circle and an x-circle defines a point which represents a normalized load

impedanc z,=r+jx. The actual load impedance is Z,=202,=2y(r+jx).Asan
e

illustration, the impedance Z, = 85 + j30 in a Zo = 50 A -system is represented by the pointPin
Figure 3. Here z, = 1.7 +j 0.6 at the intersection of the r = 1.7 and the x = 0.6 circles. Values
for I're and T'i, may then be obtained from the projections onto the horizontal and

vertical axes (see Figure 4). These are approximately given by .~0.3andI,,~0.16.

Point Px at(I'e=-1, 'in=0) correspondsto r=0 an x =0 and therefore represents a
d

short- Poe at(I'e=1,Tin=0) corresponds to an infinite impedance therefore
circuit.

represents an open circuit.
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P\( X=)
-1.0

Constant
Resistancer

Constant

\RWQ

Figure 4: Direct extraction of the reflection coefficient I' = I'\. + jT'i, along the horizontal
and vertical axes.

Instead of having a Smith chart marked with I're and I'i,, marked in rectangular coordinates,
the same chart can be marked in polar coordinates, so that every point in the I'-plane is
specified by a magnitudeﬂand a phase angle 0. Thisis illustrated in Figure 5, where

several |1"|—circ|es are shown in dashed lines and some 0 -angles are marked around the
|F|: 1 circle. The 1"| -Tircles are normally not shown on commercially available Smith charts,

but once the point representing a certain  z,=r + jx is located, it is simply a matter of
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drawing a circle centred at the origin through the point. The ratio of the distance to the point
and the radius to the edge of the chart is equal to the magnitude ofII“ of the load reflection
coefficient, and the angle that a line to that point makes with the real axis represents 0 . If,
for
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example the point

Z2=75-j100 A 73 =j200 A Z4=150 A
Zs = 0 (a short circuit) Z7 =50 A Zs =184 —j900
N

Z1=100+j50 A
Zs = (an open
circuit)

The normalized impedances shown below are plotted in Figure 6.
Z1=2+] z2=15-j2 z3=]4 z4=3
Z5 = 00 76 =0 z7=1 zg = 3.68 — |18

DEPT.OF ECE

Itis also possible to directly extract the reflection coefficient I" on the Smith chart of Figure 6.

Once the impedance point is plotted (the intersection point of a constant resistance circle and

z,=1.7 +j0.6 is marked on the Smith chart at point P, we find that
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|FL1: 1/3 and 0 =28°.

Each ][' 1circ|e intersects the real axis at two points. In Figure 5 we designate the point on the

positive real axis as Pvand on the negative real axis as Pm. Since x = 0 along the real axis, both
these points represent situations of a purely resistive load, Z ;= R, . Obviously, R, > Z ¢ at Pm
where r>1,and R. < Z o at Pm wherer<1.Since S=R,/Zofor R. >Zo, the value of the r-
circle passing through the point Pmis numerically equal to the standing wave ratio. For the

270°

example where z ;= 1.7 + j0.6 , we find that r=2 at Pu, so that S =r= 2.

Figure 5: Smith chart in polar coordinates.

Example 1:

Consider a characteristicimpedance of 50 A with the following impedances:

of a constant reactance circle), simply read the rectangular coordinates projection on the
horizontal and vertical axis. This will give I'ie, the real part of the reflection coefficient, and

I'im , the imaginary part of the reflection coefficient. Alternatively, the reflection coefficient
may be obtained in polar form by using the scales provided on the commercial Smith chart.
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'i=04+0.2j I'2=0.51-0.4]
=0.45 £ 27° =0.65 £-38°
I's=1 Ie=-1
=1 .40° =1 ./180°

I's=0.875 + 0.48] I'+=0.5
=0.998 £29° =0.5 £0°
=0 I's=0.96-0.1]

=0 =0.97 £-6°
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Figure 6: Points plotted on the Smith chart for Example 1.

The Smith chart is constructed by considering impedance (resistance and reactance). It can
be used to analyse these parameters in both the series and parallel worlds. Adding elements
in a series is straightforward. New elements can be added and their effects determined by
simply moving along the circle to their respective values. However, summing elements in
parallel is another matter, where admittances should be added.

We know that, by definition, Y=1/Zand Z=

1/Y. The admittance is expressed in mhos or A2

or alternatively in Siemens or S. Also, as Z is complex, Y must also be complex. Therefore

Y =G+jB,

(10)

where G is called the conductance and B the susceptance of the element. When working with

admittance, the first thing that we must

do is normalize y = Y/Yo. This results in y

=g+jb =1/ z.So, what happens to the reflection coefficient? We note that
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I 0
= z—1:(z—1)/z:1—y:_:y—1:' (11)
z+1 (z41)/z 14y [1+y[
Thus, for a specific normalized impedance, say z:=1.7 +j0.6 , we can find the
corresponding reflection coefficient as I';=0.33 £ 28° . From (11), it then follows that the
reflection coefficient for a normalized admittance of y,=1.7+0.6 will be

I',=-I'1=0.33 £ (28° +180°).
This also implies that for a specific normalized impedance z, we can find y=1/ by rotating
z

through an angle of 180° around the centre of the Smith chart on a constant radius (see
Figure 7).

Constant
Resistance r

Consﬁnt
Reactance x

Figure 7: Results of the 180° rotation

Note that while z and y = 1/z represent the same component, the new point has a different
position on the Smith chart and a different reflection value. This is due to the fact that the
plot for z is an impedance plot, but for y it is an admittance plot. When solving problems
where elements in series and in parallel are mixed together, we can use the same Smith chart
by simply performing rotations where conversions from zto y or y to z are required.
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2 Smith Charts and transmission line circuits
So far we have based the construction of the Smith chart on the definition of the voltage

reflection coefficient at the load. The question is: what happens when we connect the load to
a length of transmission line as in Figure 8.

I;

Ie

[
1
|
|
Vi Ly (v, Zp) i VL
|
|
|
|
|

—
&
k.

z=0
7=t

Figure 8: Finite transmission line terminated with load impedance Z..
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On a lossless transmission line with k=3 , the input impedance at a distance z' from the
load is given by

VIE) e

Z':/(z .) :Zol—F . (12)

L
The normalised impedance is then

Zi(z") 14T, e /2 1+T;
_ = = . 13
Zi= e_AZEz, 1-T ( )
ZO 1 —FL

i
Consequently, the reflection coefficient seen looking into the lossless transmission line of
length z is given by

4 —-j2pz _ 0 ,—j2Bz
[ =T e/ =T ¢fe/® (14)

This implies that as we move along the transmission line towards the generator, the
magnitude of the reflection coefficient does not change; the angle only changes from a value

of O at the load to a value of (6—22) at a distance z' from the load. On the Smith chart,

we are therefore rotating on a constanH‘ circle. One full rotation around the Smith chart

requires that 2Bz =2n, so that z=mn/B=A/2 wherelisthe wavelength on the

transmission line.

®z'/ )\ are usually provided along the perimeter of & I' =1 circle
Two additional scales in

for easy reading of the phase change 23 ®z' due to a change in line length ®z'. The #&cale
is marked in “wavelengths towards generator” in the clockwise direction (increasing z') and
“wavelengths towards load” in the counter-clockwise direction (decreasing z'). Figure 9

shows a typical commercially available Smith chart.

Each |F|-circ|e intersects the real axis at two points. Refer to Figure 5. We designate the point

on the positive real axis as Pv and on the negative real axis as Pm. Since x = 0 along the real
axis, both these points represent situations of a purely resistive input impedance,
Zi=Ri + jO .Obviously, R > Zy at Pmwhere r>1,and Ri <Zo at Pnwherer<1. Atthe

point Pmwe find that  Z,=R;=5 Z,, while Zi=Ri=Zy,/S  atPm. The point Pmon an
impedance chart corresponds to the positions of a voltage maximum (and current minimum)
on the transmission line, while Pm represents a voltage minimum (and current maximum).

Given an arbitrary normalised impedance z, the value of the r-circle passing through the point
Pumis numerically equal to the standing wave ratio. For the example, if z=1.7 +j0.6 , wefind
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Figure 9: The Smith chart.
Example 2:

Use the Smith chart to find the impedance of a short-circuited section of a lossless 50 A co-
axial transmission line that is 100 mm long. The transmission line has a dielectric of relative

permittivity ¢ ,.= 9 between the inner and outer conductor, and the frequency under
consideration is 100 MHz.

B=w = rad/m and
For the transmission line, we find 6.2875

that
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L=2n/B=0.9993~1 m. The transmission line of length =100 mmistherefore
MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPT.OF ECE
z'/2=0.1 wavelengths long.

e Sincez =0, enter the Smith chart ata point Ps..
* Move along the perimeter of the chart (" =|1 |) by 0.1 “wavelengths
towards thegenerator” in a clockwise direction to point P;.
e AtP;,read r=0and x~ 0.725, or z;=j0.725 . Then Z = j0.725 x 50 = j36.3 A .
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Figure 10: Smith chart calculations for Example 2 and Example 3.

Example 3: A lossless transmission line of length 0.434 and characteristic impedance 100 A
is terminated in an impedance 260 + j180 A. Find the voltage reflection coefficient, t
standing-wave ratio, the input impedance, and the location of a voltage maximum on the
line.

Given z2'=0.434A, Z,=100A and Z, =260+ j180 A .Then

e Enter the Smith chartatz,=Z7./Z o= 2.6 +j1.8 shown as point P; in Figure 10.

®  With the centre at the origin, draw a circle of radius OP2= FT=O.6 .

* Draw the straight line or, and extend itto P on the periphery. Read 0.220 on

“wavelengths towards generator” scale. The phase angle 6 of the load reflection may
either be read directly from the Smith chart as 21° on the "Angle of Reflection
Coefficient" scale. Therefore I', =0.6 /217180 = .6 g/0127
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e The I'=0.6 circleintersects the positive real axis OP,, atr=S=4.Therefore the

. L. DEPT.OF ECE
voltage standing-wave ratio is 4.

® The find the input impedance, move P at 0.220 by a total of 0.434 “wavelengths
toward the generator” first to 0.500 (same as 0.000) and then further to 0.434—
(0.500-0.220)=0.154 to A.
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* Join O and P by a straight line which intersects the| I|' =0.6 circle at P;. Here r=0.69
andx=1.2,0rz=0.69 + /1.2 . Then Z ;= (0.69 +j1.2) x100 =69 + 120 A .

e Ingoing from P,to P;, the T'=0.6 circle intersects the positive real axis at Py~ Where

there is a voltage maximum. Thus the voltage maximum appears at 0.250-0.220=0.030
wavelengths from the load.

3 Transmission line impedance matching.
Transmission lines are often used for the transmission of power and information. For RF

power transmission, it is highly desirable that as much power as possible is transmitted from
the generator to the load and that as little power as possible is lost on the line itself. This will
require that the load be matched to the characteristic impedance of the line, so that the
standing wave ratio on the line is as close to unity as possible. For information transmission it
is essential that the lines be matched, because mismatched loads and junctions will result in
echoes that distort the information-carrying signal.

Impedance matching by quarter-wave transformer

sy 18 . . R Z(): Ro and
For a lossless transmission line of length /, characteristic impedance of

terminated in a load impedance Z, the input impedance is given by

2=Rz +jRtan Bl
RU—L—
0 yjztanPl

=R Z, +jRotan(2m !/ \)
® Ry +jZ,tan(2ml/ 1)

If the transmission line has a length of /=X / 4, this reduces to
Z=R 7 +iR gan(r/ 2)
R

U L

0 4jZtan(n/2)

=R—Z*Z tan(m/2) +jRy

0 Ro/tan(n/2)+jZL
_ g OQ+iRo
°0+)Z,

_(Ro )?

Z
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This presents us with a simple way of matching a resistive load Z, =R, to a real-valued

, ) DEPT.OF ECE
input impedance Z=R;: insert a quarter-wave transformer with characteristic impedance

of

Ro. From (16), we have Ri=(Ro)*/ R., or

. . 17
r,=VRiR. (17)
Note that the length of the transmission line has to be chosen to be equal to a quarter of a
transmission line wavelength at the frequency where matching is desired. This matching
method is therefore frequency sensitive, since the transmission line section will no longer be
a quarter of a wavelength long at other frequencies. Also note that since the load is usually
matched to a purely real impedance Z;= R;, this method of impedance matching can only be
applied to resistive loads Z, = R,, and is not useful for matching complex load impedances
to alossless (or low-loss) transmission line.

Example 4
A signal generator has an internal impedance of 50 A. It needs to feed equal power

through alossless 50 A transmission line with a phase velocity of 0.5¢ to two separate
resistive loads ¢
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64 A and 25 A at a frequency of 10 MHz. Quarter-wave transformers are used to match
loads to the 50 A line, as shown in Figure 11.

(a) Determine the required characteristic impedances and physical lengths of the

quarter-wavelength lines.
(b) Find the standing-wave ratios on the matching line sections.

Ry = 64 ()

Ry = 30 (1)

Rp2 =25(Q)

Figure 11: Impedance matching by quarter-wave transformers (Example 4).

(a) To feed equal power to the two loads, the input resistance at the junction with the
mainline looking toward each load must be
Ri=2Ry=100 A an Ri;=2Ry=100 A
d
Therefore

Rs = \/RilRLl =80
Re = \/RIZRLZ =50

Assume that the matching sections use the same dielectric as the main line. We know that

= 1 _C

1
-— Ty
\/E yHo€ € r

We can therefore deduce that it uses a dielectric with a relative permittivity of e r=4.

Uup=

u, 2
A= P=T"_15m.

f ok

The length of each transmission line section is therefore /I=A /4=3.75m..

(b) Under matched conditions, there are no standing waves on the main transmission line, i.e.
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S =1. The standing wave ratios on the two matching line sections are as follows:
DEPT.OF ECE

R, - R, -
r = * a_64 80=—0.11

4 R R 64 + 80

L1 01

1900 1401

S = | |= =1.25

! 1-0.11

Matching section No. 2:
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R,-R, 25—
r =R Re _25 50:—0.33

TR O+R 25+50

L2 02

1+0.33
S = | | = =1.99

2 1-0.33
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Answer any five
questions All questions
carry equal marks

l.a Whatis baﬂc u matrix? Explain with an example.

b) Draw the T equlVa el for magnetically coupled circuits  [8+7]
and explain.

i, and i,
2.a  Explain the concept 0 @ce transformation with an
) example. - -

b) In the circuit shown in#i
Compute

— —2t
vy, =2e vy, =

, if

[8+7]

Figure: 1
3.a) Obtain the expression for resonant frequency of RLC series circuit.
b) In the circuit shown in figure 2, find current i’ att = 10 sec. [7+8]
t=0 sec
402 642

"y Wy
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Figure: 2

4.a) What is damping factor? Explain the step response of second order
system withunderdamped case.
b) Determine quality factor and bandwidth for the parallel RLC resonant
circuit. Given
R=100Q,L=0.2mH and C =500 pF. [7+8]
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MICROWAVE AND OPTICAL COMMUNICATIONS

5.a) Define average value of a triangular periodic waveform. Derive the expression for it

forsinusoidal waveform.
b) Using Laplace transform techniques, derive the expression for transient current in

seriesRL circuit excited by impulse input. [8+7]
6. Obtain the transient response of current for the following network shown below figure 3.
[15]
[ =1 H

T

7.a) Whatis characteristic impe ? in its importance in detail .
b) Derive g parameters for the follogyingtwo port network shown in figure 4.  [7+8]

a/;rg - 24
§0-» g5 > ;::Dml czost
A

a e
I1 50 12
+ o——l‘/\/\r '\/v\r O,
50 10
<
Vi 1{7s \/2
ﬁ

Figure: 4

8.a) Give the classification of attenuators.
b) Discuss in detail about the design of constant HP filter. [6+9]
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